Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Eur J Cancer ; 202: 114034, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537315

RESUMO

BACKGROUND: Novel effective treatments are needed for recurrent IDH mutant high-grade gliomas (IDHm HGGs). The aim of the multicentric, single-arm, phase II REVOLUMAB trial (NCT03925246) was to assess the efficacy and safety of the anti-PD1 Nivolumab in patients with recurrent IDHm HGGs. PATIENTS AND METHODS: Adult patients with IDHm WHO grade 3-4 gliomas recurring after radiotherapy and ≥ 1 line of alkylating chemotherapy were treated with intravenous Nivolumab until end of treatment (12 months), progression, unacceptable toxicity, or death. The primary endpoint was the 24-week progression-free survival rate (24w-PFS) according to RANO criteria. RESULTS: From July 2019 to June 2020, 39 patients with recurrent IDHm HGGs (twenty-one grade 3, thirteen grade 4, five grade 2 with radiological evidence of anaplastic transformation; 39% 1p/19q codeleted) were enrolled. Median time since diagnosis was 5.7 years, and the median number of previous systemic treatments was two. The 24w-PFS was 28.2% (11/39, CI95% 15-44.9%). Median PFS and OS were 1.84 (CI95% 1.81-5.89) and 14.7 months (CI95% 9.18-NR), respectively. Four patients (10.3%) achieved partial response according to RANO criteria. There were no significant differences in clinical or histomolecular features between responders and non-responders. The safety profile of Nivolumab was consistent with prior studies. CONCLUSIONS: We report the results of the first trial of immune checkpoint inhibitors in IDHm gliomas. Nivolumab failed to achieve its primary endpoint. However, treatment was well tolerated, and long-lasting responses were observed in a subset of patients, supporting further evaluation in combination with other agents (e.g. IDH inhibitors).


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Nivolumabe/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Glioma/tratamento farmacológico , Glioma/genética , Intervalo Livre de Progressão
2.
Neuro Oncol ; 26(1): 153-163, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37417948

RESUMO

BACKGROUND: Glioblastoma (GBM) systematically recurs after a standard 60 Gy radio-chemotherapy regimen. Since magnetic resonance spectroscopic imaging (MRSI) has been shown to predict the site of relapse, we analyzed the effect of MRSI-guided dose escalation on overall survival (OS) of patients with newly diagnosed GBM. METHODS: In this multicentric prospective phase III trial, patients who had undergone biopsy or surgery for a GBM were randomly assigned to a standard dose (SD) of 60 Gy or a high dose (HD) of 60 Gy with an additional simultaneous integrated boost totaling 72 Gy to MRSI metabolic abnormalities, the tumor bed and residual contrast enhancements. Temozolomide was administered concomitantly and maintained for 6 months thereafter. RESULTS: One hundred and eighty patients were included in the study between March 2011 and March 2018. After a median follow-up of 43.9 months (95% CI [42.5; 45.5]), median OS was 22.6 months (95% CI [18.9; 25.4]) versus 22.2 months (95% CI [18.3; 27.8]) for HD, and median progression-free survival was 8.6 (95% CI [6.8; 10.8]) versus 7.8 months (95% CI [6.3; 8.6]), in SD versus HD, respectively. No increase in toxicity rate was observed in the study arm. The pseudoprogression rate was similar across the SD (14.4%) and HD (16.7%) groups. For O(6)-methylguanine-DNA methyltransferase (MGMT) methylated patients, the median OS was 38 months (95% CI [23.2; NR]) for HD patients versus 28.5 months (95% CI [21.1; 35.7]) for SD patients. CONCLUSION: The additional MRSI-guided irradiation dose totaling 72 Gy was well tolerated but did not improve OS in newly diagnosed GBM. TRIAL REGISTRATION: NCT01507506; registration date: December 20, 2011. https://clinicaltrials.gov/ct2/show/NCT01507506?cond=NCT01507506&rank=1.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Antineoplásicos Alquilantes/uso terapêutico , Estudos Prospectivos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Imageamento por Ressonância Magnética
3.
Front Oncol ; 13: 1269166, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074683

RESUMO

Background: While much progress has been accomplished in the understanding of radiation-induced immune effects in tumors, little is known regarding the mechanisms involved at the tumor draining lymph node (TDLN) level. The objective of this retrospective study was to assess the immune and biological changes arising in non-involved TDLNs upon node sparing concurrent chemoradiotherapy (CRT) of non-small cell lung cancer (NSCLC) tumors. Methods: Patients with proven localized (cN0M0) NSCLC, treated by radical surgery plus lymph node dissection with (CRT+) or without (CRT-) neoadjuvant chemoradiotherapy, whereby radiotherapy was targeted on the primary tumor with no significant incidental irradiation of the non-involved TDLN station (stations XI), were identified. Bulk RNA sequencing of TDLNs was performed and data were analyzed based on differential gene expression (DGE) and gene sets enrichment. Results: Sixteen patients were included and 25 TDLNs were analyzed: 6 patients in the CRT+ group (12 samples) and 10 patients in the CRT- group (13 samples). Overall, 1001 genes were differentially expressed between the two groups (CRT+ and CRT-). Analysis with g-profiler revealed that gene sets associated with antitumor immune response, inflammatory response, hypoxia, angiogenesis, epithelial mesenchymal transition and extra-cellular matrix remodeling were enriched in the CRT+ group, whereas only gene sets associated with B cells and B-cell receptor signaling were enriched in the CRT- group. Unsupervised dimensionality reduction identified two clusters of TDLNs from CRT+ patients, of which one cluster (cluster 1) exhibited higher expression of pathways identified as enriched in the overall CRT+ group in comparison to the CRT- group. In CRT+ cluster 1, 3 out of 3 patients had pathological complete response (pCR) or major pathological response (MPR) to neoadjuvant CRT, whereas only 1 out of 3 patients in the other CRT+ cluster (cluster 2) experienced MPR and none exhibited pCR. Conclusion: Neoadjuvant node sparing concurrent CRT of NSCLC patients is associated with distinct microenvironment and immunological patterns in non-involved TDLNs as compared to non-involved TDLNs from patients with non-irradiated tumors. Our data are in line with studies showing superiority of lymph node sparing irradiation of the primary tumor in the induction of antitumor immunity.

4.
Front Vet Sci ; 10: 1253074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098992

RESUMO

Glioma is the most common primary brain tumor in dogs and predominantly affects brachycephalic breeds. Diagnosis relies on CT or MRI imaging, and the proposed treatments include surgical resection, chemotherapy, and radiotherapy depending on the tumor's location. Canine glioma from domestic dogs could be used as a more powerful model to study radiotherapy for human glioma than the murine model. Indeed, (i) contrary to mice, immunocompetent dogs develop spontaneous glioma, (ii) the canine brain structure is closer to human than mice, and (iii) domestic dogs are exposed to the same environmental factors than humans. Moreover, imaging techniques and radiation therapy used in human medicine can be applied to dogs, facilitating the direct transposition of results. The objective of this study is to fully characterize 5 canine glioma cell lines and to evaluate their intrinsic radiosensitivity. Canine cell lines present numerous analogies between the data obtained during this study on different glioma cell lines in dogs. Cell morphology is identical, such as doubling time, clonality test and karyotype. Immunohistochemical study of surface proteins, directly on cell lines and after stereotaxic injection in mice also reveals close similarity. Radiosensitivity profile of canine glial cells present high profile of radioresistance.

5.
Sci Adv ; 9(44): eadi0114, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37922359

RESUMO

Despite maximally safe resection of the magnetic resonance imaging (MRI)-defined contrast-enhanced (CE) central tumor area and chemoradiotherapy, most patients with glioblastoma (GBM) relapse within a year in peritumoral FLAIR regions. Magnetic resonance spectroscopy imaging (MRSI) can discriminate metabolic tumor areas with higher recurrence potential as CNI+ regions (choline/N-acetyl-aspartate index >2) can predict relapse sites. As relapses are mainly imputed to glioblastoma stem-like cells (GSCs), CNI+ areas might be GSC enriched. In this prospective trial, 16 patients with GBM underwent MRSI/MRI before surgery/chemoradiotherapy to investigate GSC content in CNI-/+ biopsies from CE/FLAIR. Biopsy and derived-GSC characterization revealed a FLAIR/CNI+ sample enrichment in GSC and in gene signatures related to stemness, DNA repair, adhesion/migration, and mitochondrial bioenergetics. FLAIR/CNI+ samples generate GSC-enriched neurospheres faster than FLAIR/CNI-. Parameters assessing biopsy GSC content and time-to-neurosphere formation in FLAIR/CNI+ were associated with worse patient outcome. Preoperative MRI/MRSI would certainly allow better resection and targeting of FLAIR/CNI+ areas, as their GSC enrichment can predict worse outcomes.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Neoplasias Encefálicas/patologia , Glioblastoma/metabolismo , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/metabolismo , Estudos Prospectivos , Recidiva
6.
Cancers (Basel) ; 15(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37370678

RESUMO

BACKGROUND: IDH mutant and 1p/19q codeleted oligodendrogliomas are the gliomas associated with the best prognosis. However, despite their sensitivity to treatment, patient survival remains heterogeneous. We aimed to identify gene expressions associated with response to treatment from a national cohort of patients with oligodendrogliomas, all treated with radiotherapy +/- chemotherapy. METHODS: We extracted total RNA from frozen tumor samples and investigated enriched pathways using KEGG and Reactome databases. We applied a stability selection approach based on subsampling combined with the lasso-pcvl algorithm to identify genes associated with progression-free survival and calculate a risk score. RESULTS: We included 68 patients with oligodendrogliomas treated with radiotherapy +/- chemotherapy. After filtering, 1697 genes were obtained, including 134 associated with progression-free survival: 35 with a better prognosis and 99 with a poorer one. Eight genes (ST3GAL6, QPCT, NQO1, EPHX1, CST3, S100A8, CHI3L1, and OSBPL3) whose risk score remained statistically significant after adjustment for prognostic factors in multivariate analysis were selected in more than 60% of cases were associated with shorter progression-free survival. CONCLUSIONS: We found an eight-gene signature associated with a higher risk of rapid relapse after treatment in patients with oligodendrogliomas. This finding could help clinicians identify patients who need more intensive treatment.

7.
Cancers (Basel) ; 15(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37190181

RESUMO

Glioblastoma is the most aggressive primary brain tumor, which almost systematically relapses despite surgery (when possible) followed by radio-chemotherapy temozolomide-based treatment. Upon relapse, one option for treatment is another chemotherapy, lomustine. The efficacy of these chemotherapy regimens depends on the methylation of a specific gene promoter known as MGMT, which is the main prognosis factor for glioblastoma. Knowing this biomarker is a key issue for the clinician to personalize and adapt treatment to the patient at primary diagnosis for elderly patients, in particular, and also upon relapse. The association between MRI-derived information and the prediction of MGMT promoter status has been discussed in many studies, and some, more recently, have proposed the use of deep learning algorithms on multimodal scans to extract this information, but they have failed to reach a consensus. Therefore, in this work, beyond the classical performance figures usually displayed, we seek to compute confidence scores to see if a clinical application of such methods can be seriously considered. The systematic approach carried out, using different input configurations and algorithms as well as the exact methylation percentage, led to the following conclusion: current deep learning methods are unable to determine MGMT promoter methylation from MRI data.

8.
Oncologist ; 28(9): 825-e817, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37196069

RESUMO

BACKGROUND: Hypofractionated stereotactic radiotherapy (hFSRT) is a salvage option for recurrent glioblastoma (GB) which may synergize anti-PDL1 treatment. This phase I study evaluated the safety and the recommended phase II dose of anti-PDL1 durvalumab combined with hFSRT in patients with recurrent GB. METHODS: Patients were treated with 24 Gy, 8 Gy per fraction on days 1, 3, and 5 combined with the first 1500 mg Durvalumab dose on day 5, followed by infusions q4weeks until progression or for a maximum of 12 months. A standard 3 + 3 Durvalumab dose de-escalation design was used. Longitudinal lymphocytes count, cytokines analyses on plasma samples, and magnetic resonance imaging (MRI) were collected. RESULTS: Six patients were included. One dose limiting toxicity, an immune-related grade 3 vestibular neuritis related to Durvalumab, was reported. Median progression-free interval (PFI) and overall survival (OS) were 2.3 and 16.7 months, respectively. Multi-modal deep learning-based analysis including MRI, cytokines, and lymphocytes/neutrophil ratio isolated the patients presenting pseudoprogression, the longest PFI and those with the longest OS, but statistical significance cannot be established considering phase I data only. CONCLUSION: Combination of hFSRT and Durvalumab in recurrent GB was well tolerated in this phase I study. These encouraging results led to an ongoing randomized phase II. (ClinicalTrials.gov Identifier: NCT02866747).


Assuntos
Neoplasias Encefálicas , Glioblastoma , Radiocirurgia , Reirradiação , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Resultado do Tratamento , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/radioterapia , Radiocirurgia/efeitos adversos , Citocinas
9.
Radiother Oncol ; 183: 109665, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024057

RESUMO

BACKGROUND AND PURPOSE: All glioblastoma subtypes share the hallmark of aggressive invasion, meaning that it is crucial to identify their different components if we are to ensure effective treatment and improve survival. Proton MR spectroscopic imaging (MRSI) is a noninvasive technique that yields metabolic information and is able to identify pathological tissue with high accuracy. The aim of the present study was to identify clusters of metabolic heterogeneity, using a large MRSI dataset, and determine which of these clusters are predictive of progression-free survival (PFS). MATERIALS AND METHODS: MRSI data of 180 patients acquired in a pre-radiotherapy examination were included in the prospective SPECTRO-GLIO trial. Eight features were extracted for each spectrum: Cho/NAA, NAA/Cr, Cho/Cr, Lac/NAA, and the ratio of each metabolite to the sum of all the metabolites. Clustering of data was performed using a mini-batch k-means algorithm. The Cox model and logrank test were used for PFS analysis. RESULTS: Five clusters were identified as sharing similar metabolic information and being predictive of PFS. Two clusters revealed metabolic abnormalities. PFS was lower when Cluster 2 was the dominant cluster in patients' MRSI data. Among the metabolites, lactate (present in this cluster and in Cluster 5) was the most statistically significant predictor of poor outcome. CONCLUSION: Results showed that pre-radiotherapy MRSI can be used to reveal tumor heterogeneity. Groups of spectra, which have the same metabolic information, reflect the different tissue components representative of tumor burden proliferation and hypoxia. Clusters with metabolic abnormalities and high lactate are predictive of PFS.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/radioterapia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Intervalo Livre de Progressão , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Lactatos/uso terapêutico , Colina/metabolismo , Colina/uso terapêutico , Ácido Aspártico/metabolismo , Ácido Aspártico/uso terapêutico
10.
Cancers (Basel) ; 15(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36831503

RESUMO

Local consolidative radiotherapy in the treatment of metastatic malignancies has shown promising results in several types of tumors. The objective of this study was to assess consolidative radiotherapy to the bladder and to residual metastases in metastatic urothelial bladder cancer with no progression following first-line systemic therapy. MATERIALS/METHODS: Patients who received first-line therapy for the treatment of metastatic urothelial bladder cancer (mUBC) and who were progression-free following treatment with no more than five residual metastases were retrospectively identified through the database of four Comprehensive Cancer Centers, between January 2005 and December 2018. Among them, patients who received subsequent definitive radiotherapy (of EQD2Gy > 45Gy) to the bladder and residual metastases were included in the consolidative group (irradiated (IR) group), and the other patients were included in the observation group (NIR group). Progression-free survival (PFS) and overall survival (OS) were determined from the start of the first-line chemotherapy using the Kaplan-Meier method. To prevent immortal time bias, a Cox model with time-dependent covariates and 6-month landmark analyses were performed to examine OS and PFS. RESULTS: A total of 91 patients with at least stable disease following first-line therapy and with no more than five residual metastases were analyzed: 51 in the IR group and 40 in the NIR group. Metachronous metastatic disease was more frequent in the NIR group (19% vs. 5%, p = 0.02); the median number of metastases in the IR group vs. in the NIR group was 2 (1-9) vs. 3 (1-5) (p = 0.04) at metastatic presentation, and 1 (0-5) vs. 2 (0-5) (p = 0.18) after completion of chemotherapy (residual lesions), respectively. Two grade 3 toxicities (3.9%) and no grade 4 toxicity were reported in the IR group related to radiotherapy. With a median follow up of 85.9 months (95% IC (36.7; 101.6)), median OS and PFS were 21.7 months (95% IC (17.1; 29.7)) and 11.1 months (95% IC (9.9; 14.1)) for the whole cohort, respectively. In multivariable analysis, consolidative radiotherapy conferred a benefit in both PFS (HR = 0.49, p = 0.007) and OS (HR = 0.47, p = 0.015) in the whole population; in the landmark analysis at 6 months, radiotherapy was associated with improved OS (HR = 0.48, p = 0.026), with a trend for PFS (HR = 0.57, p = 0.082). CONCLUSION: Consolidative radiotherapy for mUBC patients who have not progressed after first-line therapy and with limited residual disease seems to confer both OS and PFS benefits. The role of consolidative radiotherapy in the context of avelumab maintenance should be addressed prospectively.

11.
Radiother Oncol ; 181: 109486, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36706959

RESUMO

BACKGROUND AND PURPOSE: To investigate the feasibility of using a multiapproach analysis combining clinical data, diffusion- and perfusion-weighted imaging, and 3D magnetic resonance spectroscopic imaging to distinguish true tumor progression (TP) from pseudoprogression (PSP) in patients with glioblastoma. MATERIALS AND METHODS: Progression was suspected within 6 months of radiotherapy in 46 of the 180 patients included in the Phase-III SpectroGlio trial (NCT01507506). Choline/creatine (Cho/Cr), choline/N-acetyl aspartate (Cho/NAA) and lactate/N-acetyl aspartate (Lac/NAA) ratios were extracted. Apparent diffusion coefficient (ADC) and cerebral blood volume (CBV) maps were calculated. ADC, relative CBV values and tumor volume (TV) were collected at relapse. Differences between TP and PSP were evaluated using Mann-Whitney tests, and p values were adjusted with Bonferroni correction. RESULTS: Patients with suspected progression underwent a new MRI scan 1 month after the first one. Of these, 28 were classified as PSP, and 18 as TP. After a median follow-up of 41 months, median overall survival was higher in PSP than in TP (25.2 vs 20.3 months; p = 0.0092). Lac/NAA and Cho/Cr ratios were higher in TP than in PSP (1.2 vs 0.5; p = 0.006; and 3 vs 2.2; p = 0.021). After multivariate regression analysis, TV was the most significant predictor of TP vs PSP, and the only one retained in the model (p = 0.028). CONCLUSION: Three spectroscopic ratios could be used to differentiate PSP from TP. TV at relapse was the most predictive factor in the multivariate analysis, and overall survival was higher in PSP than in TP.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Colina , Progressão da Doença , Glioblastoma/diagnóstico por imagem , Glioblastoma/radioterapia , Imageamento por Ressonância Magnética/métodos , Recidiva Local de Neoplasia
12.
Cancers (Basel) ; 16(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38201456

RESUMO

GSCs play an important role in GBM recurrence. Understanding the resistance mechanisms in these cells is therefore crucial for radiation therapy optimization. In this study, using patient-derived GSCs, we demonstrate that GDF15, a cytokine belonging to the TGF-ß superfamily, is regulated by irradiation (IR) and the transcription factor WWTR1/TAZ. Blocking WWTR1/TAZ using specific siRNAs significantly reduces GDF15 basal expression and reverses the upregulation of this cytokine induced by IR. Furthermore, we demonstrate that GDF15 plays an important role in GSC radioresistance. Targeting GDF15 expression by siRNA in GSCs expressing high levels of GDF15 sensitizes the cells to IR. In addition, we also found that GDF15 expression is critical for GSC spheroid formation, as GDF15 knockdown significantly reduces the number of GSC neurospheres. This study suggests that GDF15 targeting in combination with radiotherapy may be a feasible approach in patients with GBM.

13.
Cells ; 11(14)2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35883571

RESUMO

Systematic recurrence of glioblastoma (GB) despite surgery and chemo-radiotherapy is due to GB stem cells (GBSC), which are particularly invasive and radioresistant. Therefore, there is a need to identify new factors that might be targeted to decrease GBSC invasive capabilities as well as radioresistance. Patient-derived GBSC were used in this study to demonstrate a higher expression of the glycoprotein M6a (GPM6A) in invasive GBSC compared to non-invasive cells. In 3D invasion assays performed on primary neurospheres of GBSC, we showed that blocking GPM6A expression by siRNA significantly reduced cell invasion. We also demonstrated a high correlation of GPM6A with the oncogenic protein tyrosine phosphatase, PTPRZ1, which regulates GPM6A expression and cell invasion. The results of our study also show that GPM6A and PTPRZ1 are crucial for GBSC sphere formation. Finally, we demonstrated that targeting GPM6A or PTPRZ1 in GBSC increases the radiosensitivity of GBSC. Our results suggest that blocking GPM6A or PTPRZ1 could represent an interesting approach in the treatment of glioblastoma since it would simultaneously target proliferation, invasion, and radioresistance.


Assuntos
Glioblastoma , Glicoproteínas de Membrana , Proteínas do Tecido Nervoso , Glioblastoma/genética , Glioblastoma/radioterapia , Humanos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/efeitos da radiação , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos da radiação , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/efeitos da radiação , Tolerância a Radiação , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores
14.
Nat Med ; 28(4): 752-765, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35411077

RESUMO

Whole-brain radiotherapy (WBRT) is the treatment backbone for many patients with brain metastasis; however, its efficacy in preventing disease progression and the associated toxicity have questioned the clinical impact of this approach and emphasized the need for alternative treatments. Given the limited therapeutic options available for these patients and the poor understanding of the molecular mechanisms underlying the resistance of metastatic lesions to WBRT, we sought to uncover actionable targets and biomarkers that could help to refine patient selection. Through an unbiased analysis of experimental in vivo models of brain metastasis resistant to WBRT, we identified activation of the S100A9-RAGE-NF-κB-JunB pathway in brain metastases as a potential mediator of resistance in this organ. Targeting this pathway genetically or pharmacologically was sufficient to revert the WBRT resistance and increase therapeutic benefits in vivo at lower doses of radiation. In patients with primary melanoma, lung or breast adenocarcinoma developing brain metastasis, endogenous S100A9 levels in brain lesions correlated with clinical response to WBRT and underscored the potential of S100A9 levels in the blood as a noninvasive biomarker. Collectively, we provide a molecular framework to personalize WBRT and improve its efficacy through combination with a radiosensitizer that balances therapeutic benefit and toxicity.


Assuntos
Neoplasias Encefálicas , Melanoma , Neoplasias Encefálicas/secundário , Irradiação Craniana , Humanos , Melanoma/radioterapia
15.
Cancers (Basel) ; 14(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35326702

RESUMO

Glioblastomas (GBM) are aggressive brain tumours with a poor prognosis despite heavy therapy that combines surgical resection and radio-chemotherapy. The presence of a subpopulation of GBM stem cells (GSC) contributes to tumour aggressiveness, resistance and recurrence. Moreover, GBM are characterised by abnormal, abundant vascularisation. Previous studies have shown that GSC are directly involved in new vessel formation via their transdifferentiation into tumour-derived endothelial cells (TDEC) and that irradiation (IR) potentiates the pro-angiogenic capacity of TDEC via the Tie2 signalling pathway. We therefore investigated the impact of regorafenib, a multikinase inhibitor with anti-angiogenic and anti-tumourigenic activity, on GSC and TDEC obtained from irradiated GSC (TDEC IR+) or non-irradiated GSC (TDEC). Regorafenib significantly decreases GSC neurosphere formation in vitro and inhibits tumour formation in the orthotopic xenograft model. Regorafenib also inhibits transdifferentiation by decreasing CD31 expression, CD31+ cell count, pseudotube formation in vitro and the formation of functional blood vessels in vivo of TDEC and TDEC IR+. All of these results confirm that regorafenib clearly impacts GSC tumour formation and transdifferentiation and may therefore be a promising therapeutic option in combination with chemo/radiotherapy for the treatment of highly aggressive brain tumours.

16.
Biomedicines ; 10(2)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35203493

RESUMO

BACKGROUND: Glioblastoma is the most frequent malignant primitive brain tumor in adults. The treatment includes surgery, radiotherapy, and chemotherapy. During follow-up, combined chemoradiotherapy can induce treatment-related changes mimicking tumor progression on medical imaging, such as pseudoprogression (PsP). Differentiating PsP from true progression (TP) remains a challenge for radiologists and oncologists, who need to promptly start a second-line treatment in the case of TP. Advanced magnetic resonance imaging (MRI) techniques such as diffusion-weighted imaging, perfusion MRI, and proton magnetic resonance spectroscopic imaging are more efficient than conventional MRI in differentiating PsP from TP. None of these techniques are fully effective, but current advances in computer science and the advent of artificial intelligence are opening up new possibilities in the imaging field with radiomics (i.e., extraction of a large number of quantitative MRI features describing tumor density, texture, and geometry). These features are used to build predictive models for diagnosis, prognosis, and therapeutic response. METHOD: Out of 7350 records for MR spectroscopy, GBM, glioma, recurrence, diffusion, perfusion, pseudoprogression, radiomics, and advanced imaging, we screened 574 papers. A total of 228 were eligible, and we analyzed 72 of them, in order to establish the role of each imaging modality and the usefulness and limitations of radiomics analysis.

17.
Magn Reson Med ; 87(4): 1688-1699, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34825724

RESUMO

PURPOSE: Proton magnetic resonance spectroscopic imaging (1H MRSI) is a noninvasive technique for assessing tumor metabolism. Manual inspection is still the gold standard for quality control (QC) of spectra, but it is both time-consuming and subjective. The aim of the present study was to assess automatic QC of glioblastoma MRSI data using random forest analysis. METHODS: Data for 25 patients, acquired prospectively in a preradiotherapy examination, were submitted to postprocessing with syngo.MR Spectro (VB40A; Siemens) or Java-based magnetic resonance user interface (jMRUI) software. A total of 28 features were extracted from each spectrum for the automatic QC. Three spectroscopists also performed manual inspections, labeling each spectrum as good or poor quality. All statistical analyses, with addressing unbalanced data, were conducted with R 3.6.1 (R Foundation for Statistical Computing; https://www.r-project.org). RESULTS: The random forest method classified the spectra with an area under the curve of 95.5%, sensitivity of 95.8%, and specificity of 81.7%. The most important feature for the classification was Residuum_Lipids_Versus_Fit, obtained with syngo.MR Spectro. CONCLUSION: The automatic QC method was able to distinguish between good- and poor-quality spectra, and can be used by radiation oncologists who are not spectroscopy experts. This study revealed a novel set of MRSI signal features that are closely correlated with spectral quality.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/radioterapia , Glioblastoma/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Controle de Qualidade , Reprodutibilidade dos Testes
18.
Cancers (Basel) ; 13(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375621

RESUMO

Recurrence of GBM is thought to be due to GBMSCs, which are particularly chemo-radioresistant and characterized by a high capacity to invade normal brain. Evidence is emerging that modulation of m6A RNA methylation plays an important role in tumor progression. However, the impact of this mRNA modification in GBM is poorly studied. We used patient-derived GBMSCs to demonstrate that high expression of the RNA demethylase, ALKBH5, increases radioresistance by regulating homologous recombination (HR). In cells downregulated for ALKBH5, we observed a decrease in GBMSC survival after irradiation likely due to a defect in DNA-damage repair. Indeed, we observed a decrease in the expression of several genes involved in the HR, including CHK1 and RAD51, as well as a persistence of γ-H2AX staining after IR. We also demonstrated in this study that ALKBH5 contributes to the aggressiveness of GBM by favoring the invasion of GBMSCs. Indeed, GBMSCs deficient for ALKBH5 exhibited a significant reduced invasion capability relative to control cells. Our data suggest that ALKBH5 is an attractive therapeutic target to overcome radioresistance and invasiveness of GBMSCs.

19.
Clin Neurol Neurosurg ; 196: 105972, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32512407

RESUMO

OBJECTIVES: Establishing an overall survival prognosis for resected glioblastoma during routine postoperative management remains a challenge. The aim of our single-center study was to assess the usefulness of basing survival analyses on preradiotherapy MRI (PRMR) rather than on postoperative MRI (POMR). PATIENTS AND METHODS: A retrospective review was undertaken of 75 patients with glioblastoma treated at our institute. We collected overall survival and MRI volumetric data. We analyzed two types of volumetric data: residual tumor volume and extent of resection. Overall survival rates were compared according to these two types of volumetric data, calculated on either POMR or PRMR and according to the presence or absence of residual enhancement. RESULTS: Analysis of volumetric data revealed progression of some residual tumors between POMR and PRMR. Kaplan-Meier analysis of the correlations between extent of resection, residual tumor volume, and overall survival revealed significant differences between POMR and PRMR data. Both MRI scans indicated a difference between the complete resection subgroup and the incomplete resection subgroup, as median overall survival was longer in patients with complete resection. However, differences were significant for PRMR (25.3 vs. 15.5, p =  0.012), but not for POMR (21.3 vs. 15.8 months, p =  0.145). With a residual tumor volume cut-off value of 3 cm3, Kaplan-Meier survival analysis revealed non-significant differences on POMR (p =  0.323) compared with PRMR (p =  0.007). CONCLUSION: Survival in patients with resected glioblastoma was more accurately predicted by volumetric data acquired with PRMR. Differences in predicted survival between the POMR and PRMR groups can be attributed to changes in tumor behavior before adjuvant therapy.


Assuntos
Irradiação Craniana , Procedimentos Cirúrgicos de Citorredução , Glioblastoma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Neuroimagem , Procedimentos Neurocirúrgicos , Neoplasias Supratentoriais/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Quimiorradioterapia , Terapia Combinada , Feminino , Glioblastoma/mortalidade , Glioblastoma/cirurgia , Glioblastoma/terapia , Humanos , Processamento de Imagem Assistida por Computador , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Neoplasia Residual , Cuidados Pós-Operatórios , Cuidados Pré-Operatórios , Estudos Retrospectivos , Neoplasias Supratentoriais/mortalidade , Neoplasias Supratentoriais/cirurgia , Neoplasias Supratentoriais/terapia , Carga Tumoral
20.
Cell Death Dis ; 10(11): 816, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31659157

RESUMO

Glioblastomas (GBM) are brain tumors with a poor prognosis despite treatment that combines surgical resection and radio-chemotherapy. These tumors are characterized by abundant vascularization and significant cellular heterogeneity including GBM stem-like cells (GSC) which contribute to tumor aggressiveness, resistance, and recurrence. Recent data has demonstrated that GSC are directly involved in the formation of new vessels via their transdifferentiation into Tumor Derived Endothelial Cells (TDEC). We postulate that cellular stress such as ionizing radiation (IR) could enhance the transdifferentiation of GSC into TDEC. GSC neurospheres isolated from 3 different patients were irradiated or not and were then transdifferentiated into TDEC. In fact, TDEC obtained from irradiated GSC (TDEC IR+) migrate more towards VEGF, form more pseudotubes in MatrigelTM in vitro and develop more functional blood vessels in MatrigelTM plugs implanted in Nude mice than TDEC obtained from non-irradiated GSC. Transcriptomic analysis allows us to highlight an overexpression of Tie2 in TDEC IR+. All IR-induced effects on TDEC were abolished by using a Tie2 kinase inhibitor, which confirms the role of the Tie2 signaling pathway in this process. Finally, by analyzing Tie2 expression in patient GBMs by immunohistochemistry, we demonstrated that the number of Tie2+ vessels increases in recurrent GBM compared with matched untreated tumors. In conclusion, we demonstrate that IR potentiates proangiogenic features of TDEC through the Tie2 signaling pathway, which indicates a new pathway of treatment-induced tumor adaptation. New therapeutic strategies that associate standard treatment and a Tie2 signaling pathway inhibitor should be considered for future trials.


Assuntos
Transdiferenciação Celular/genética , Glioblastoma/genética , Recidiva Local de Neoplasia/genética , Receptor TIE-2/genética , Animais , Vasos Sanguíneos/patologia , Vasos Sanguíneos/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Transdiferenciação Celular/efeitos da radiação , Células Endoteliais/patologia , Células Endoteliais/efeitos da radiação , Glioblastoma/patologia , Glioblastoma/radioterapia , Humanos , Camundongos , Recidiva Local de Neoplasia/patologia , Neoplasias Induzidas por Radiação/genética , Neoplasias Induzidas por Radiação/patologia , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos da radiação , Neovascularização Patológica , Radiação Ionizante , Transdução de Sinais/efeitos da radiação , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA