Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Syst ; 13(12): 1002-1015.e9, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36516834

RESUMO

When challenged with an invading pathogen, the host-defense response is engaged to eliminate the pathogen (resistance) and to maintain health in the presence of the pathogen (disease tolerance). However, the identification of distinct molecular programs underpinning disease tolerance and resistance remained obscure. We exploited transcriptional and physiological monitoring across 33 mouse strains, during in vivo influenza virus infection, to identify two host-defense gene programs-one is associated with hallmarks of disease tolerance and the other with hallmarks of resistance. Both programs constitute generic responses in multiple mouse and human cell types. Our study describes the organizational principles of these programs and validates Arhgdia as a regulator of disease-tolerance states in epithelial cells. We further reveal that the baseline disease-tolerance state in peritoneal macrophages is associated with the pathophysiological response to injury and infection. Our framework provides a paradigm for the understanding of disease tolerance and resistance at the molecular level.


Assuntos
Influenza Humana , Infecções por Orthomyxoviridae , Camundongos , Humanos , Animais , Influenza Humana/genética , Interações Hospedeiro-Patógeno/genética , Infecções por Orthomyxoviridae/genética , Células Epiteliais/metabolismo
2.
Cell Syst ; 6(6): 679-691.e4, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29886109

RESUMO

The influenza virus is a major cause of morbidity and mortality worldwide. Yet, both the impact of intracellular viral replication and the variation in host response across different cell types remain uncharacterized. Here we used single-cell RNA sequencing to investigate the heterogeneity in the response of lung tissue cells to in vivo influenza infection. Analysis of viral and host transcriptomes in the same single cell enabled us to resolve the cellular heterogeneity of bystander (exposed but uninfected) as compared with infected cells. We reveal that all major immune and non-immune cell types manifest substantial fractions of infected cells, albeit at low viral transcriptome loads relative to epithelial cells. We show that all cell types respond primarily with a robust generic transcriptional response, and we demonstrate novel markers specific for influenza-infected as opposed to bystander cells. These findings open new avenues for targeted therapy aimed exclusively at infected cells.


Assuntos
Interações Hospedeiro-Patógeno/genética , Influenza Humana/genética , Orthomyxoviridae/genética , Animais , Sequência de Bases/genética , Linhagem Celular , Células Epiteliais/imunologia , Feminino , Perfilação da Expressão Gênica/métodos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/imunologia , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Transcriptoma/genética , Replicação Viral
3.
Sci Rep ; 6: 37115, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27845446

RESUMO

SETD3 is a member of the protein lysine methyltransferase (PKMT) family, which catalyzes the addition of methyl group to lysine residues. Accumulating data suggest that PKMTs are involved in the regulation of a broad spectrum of biological processes by targeting histone and non-histone proteins. Using a proteomic approach, we have identified 172 new SETD3 interacting proteins. We show that SETD3 binds and methylates the transcription factor FoxM1, which has been previously shown to be associated with the regulation of VEGF expression. We further demonstrate that under hypoxic conditions SETD3 is down-regulated. Mechanistically, we find that under basal conditions, SETD3 and FoxM1 are enriched on the VEGF promoter. Dissociation of both SETD3 and FoxM1 from the VEGF promoter under hypoxia correlates with elevated expression of VEGF. Taken together, our data reveal a new SETD3-dependent methylation-based signaling pathway at chromatin that regulates VEGF expression under normoxic and hypoxic conditions.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica/fisiologia , Histona-Lisina N-Metiltransferase/metabolismo , Regiões Promotoras Genéticas/fisiologia , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/biossíntese , Proteína Forkhead Box M1/metabolismo , Células HEK293 , Células HeLa , Células Hep G2 , Histona Metiltransferases , Humanos
4.
Data Brief ; 6: 799-802, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26937450

RESUMO

SETD6 (SET-domain-containing protein 6) is a mono-methyltransferase that has been shown to methylate RelA and H2AZ. Using a proteomic approach we recently identified several new SETD6 substrates. To identify novel SETD6 interacting proteins, SETD6 was immunoprecipitated (IP) from Human erythromyeloblastoid leukemia K562 cells. SETD6 binding proteins were subjected to mass-spectrometry analysis resulting in 115 new SETD6 binding candidates. STRING database was used to map the SETD6 interactome network. Network enrichment analysis of biological processes with Gene Ontology (GO) database, identified three major groups; metabolic processes, muscle contraction and protein folding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA