Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Ann Hematol ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713255

RESUMO

Chronic inflammation has been identified in leukemias as an essential regulator of angiogenesis. B-chronic lymphocytic leukemia (CLL) cells secrete high levels of vascular endothelial growth factor (VEGF) and hypoxia inducible factor 1 alpha (HIF1α). The aim was to assess the role of inflammation in activation of angiogenic factors: endothelial nitric oxide synthase (eNOS), HIF1α and VEGF via proliferation related signaling pathways and VEGF autocrine control. We isolated mononuclear cells (MNC) and CD19+ cells from peripheral blood of 60 patients with CLL. MNC were treated with pro-inflammatory interleukin-6 (IL-6) and VEGF, in combination with inhibitors of JAK1/2 (Ruxolitinib), mTOR (Rapamycin), NF-κB (JSH23), SMAD (LDN-193189) and PI3K/AKT (Ly294002) signaling pathways, to evaluate eNOS, VEGF and HIF1α expression by immunoblotting, immunocytochemistry and RT-qPCR. Also, we investigated IL-6 dependent neovascularization in human microvascular endothelial cells (HMEC-1) in co-culture with MNC of CLL. The angiogenic factors eNOS, VEGF and HIF1α had significantly higher frequencies in MNC of CLL in comparison to healthy controls (p < 0.001) and CD19+ cells of CLL. IL-6 increased the quantity of HIF1α (p < 0.05) and VEGF positive cells in the presence of JSH23 (p < 0.01). VEGF increased HIF1α (p < 0.05), and decreased eNOS gene expression (p < 0.01) in MNC of CLL. VEGF significantly (p < 0.001) increased the number of HIF1α positive MNC of CLL, prevented by inhibitors of JAK1/2, PI3K and mTOR signaling pathways. VEGF stimulation of SMAD (p < 0.05) and STAT5 (p < 0.01) signaling has been prevented by inhibitors of JAK1/2, mTOR, PI3K and SMAD signaling, individually (p < 0.01) or mutually (p < 0.001). Also, we showed that MNC of CLL and IL-6 individually stimulate neovascularization in co-culture with HMEC-1, without a cumulative effect. We demonstrated elevated angiogenic factors in CLL, while VEGF and IL-6 independently stimulated HIF1α. VEGF stimulation of HIF1α was mostly mTOR dependent, while IL-6 stimulation was NF-κB dependent.

2.
Vaccines (Basel) ; 11(10)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37896963

RESUMO

The severity and mortality of coronavirus disease 2019 (COVID-19) are greater in males than in females, though the infection rate is the same in the two sexes. We investigated sex hormone differences associated with the hyperinflammatory immune response to SARS-CoV-2 on the basis of patients' cytokine profiles and vaccination statuses. Clinical and laboratory data of 117 patients with COVID-19 were collected to examine sex differences associated with oxidative stress markers, neutrophil extracellular traps (NETs), and plasma cytokine levels up to 5 months from hospital admission. The testosterone and free testosterone levels were low in male patients with COVID-19 and returned to normal values after recovery from the disease. The dihydrotestosterone (DHT) levels were transiently reduced, while the sex hormone-binding globulin levels were decreased in post-COVID-19 male patients. The levels of the inflammatory cytokines interleukin-6 (IL-6) and IL-10 appeared generally increased at diagnosis and decreased in post-COVID-19 patients. In females, the concentration of tumor necrosis factor-alpha was increased by four times at diagnosis. The levels of the coagulation markers intercellular adhesion molecule-1 (ICAM-1) and E-selectin were consistently upregulated in post-COVID-19 female patients, in contrast to those of vascular cell adhesion molecule-1 (VCAM-1), P-selectin, and chemokine IL-8. DHT increased the levels of reactive oxygen species in the neutrophils of male patients, while estradiol decreased them in females. Markers for NET, such as circulating DNA and myeloperoxidase, were significantly more abundant in the patients' plasma. Sex hormones have a potential protective role during SARS-CoV-2 infection, which is weakened by impaired testosterone synthesis in men.

3.
Exp Mol Med ; 54(3): 273-284, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35288649

RESUMO

Although bone marrow-derived mesenchymal stromal cells (BM-MSCs) have been identified as a major cellular source of fibrosis, the exact molecular mechanism and signaling pathways involved have not been identified thus far. Here, we show that BM-MSCs contribute to fibrosis in myeloproliferative neoplasms (MPNs) by differentiating into αSMA-positive myofibroblasts. These cells display a dysregulated extracellular matrix with increased FN1 production and secretion of profibrotic MMP9 compared to healthy donor cells. Fibrogenic TGFß and inflammatory JAK2/STAT3 and NFκB signaling pathway activity is increased in BM-MSCs of MPN patients. Moreover, coculture with mononuclear cells from MPN patients was sufficient to induce fibrosis in healthy BM-MSCs. Inhibition of JAK1/2, SMAD3 or NFκB significantly reduced the fibrotic phenotype of MPN BM-MSCs and was able to prevent the development of fibrosis induced by coculture of healthy BM-MSCs and MPN mononuclear cells with overly active JAK/STAT signaling, underlining their involvement in fibrosis. Combined treatment with JAK1/2 and SMAD3 inhibitors showed synergistic and the most favorable effects on αSMA and FN1 expression in BM-MSCs. These results support the combined inhibition of TGFß and inflammatory signaling to extenuate fibrosis in MPN.


Assuntos
Células-Tronco Mesenquimais , Neoplasias , Medula Óssea/metabolismo , Medula Óssea/patologia , Células da Medula Óssea/metabolismo , Fibrose , Humanos , Células-Tronco Mesenquimais/metabolismo , Neoplasias/metabolismo , Transdução de Sinais
4.
Biomolecules ; 12(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35204748

RESUMO

Chronic inflammation is characterized by the production of reactive oxygen species (ROS), reactive nitrogen species, and inflammatory cytokines in myeloproliferative neoplasms (MPNs). In addition to these parameters, the aim of this study was to analyze the influence of ROS on the proliferation-related AKT/mTOR signaling pathway and the relationship with inflammatory factors in chronic myelogenous leukemia (CML). The activity of the antioxidant enzymes superoxide dismutase, glutathione peroxidase, and catalase is reduced in erythrocytes while levels of the oxidative stress markers malondialdehyde and protein carbonyl are elevated in the plasma of patients with CML. In addition, nitrogen species (nitrotyrosine, iNOS, eNOS) and inflammation markers (IL-6, NFkB, and S100 protein) were increased in granulocytes of CML while anti-inflammatory levels of IL-10 were decreased in plasma. CML granulocytes exhibited greater resistance to cytotoxic H2O2 activity compared to healthy subjects. Moreover, phosphorylation of the apoptotic p53 protein was reduced while the activity of the AKT/mTOR signaling pathway was increased, which was further enhanced by oxidative stress (H2O2) in granulocytes and erythroleukemic K562 cells. IL-6 caused oxidative stress and DNA damage that was mitigated using antioxidant or inhibition of inflammatory NFkB transcription factor in K562 cells. We demonstrated the presence of oxidative and nitrosative stress in CML, with the former mediated by AKT/mTOR signaling and stimulated by inflammation.


Assuntos
Peróxido de Hidrogênio , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Peróxido de Hidrogênio/farmacologia , Inflamação , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Estresse Nitrosativo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
5.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35163413

RESUMO

Neutrophils are an essential component of the innate immune response, but their prolonged activation can lead to chronic inflammation. Consequently, neutrophil homeostasis is tightly regulated through balance between granulopoiesis and clearance of dying cells. The bone marrow is both a site of neutrophil production and the place they return to and die. Myeloproliferative neoplasms (MPN) are clonal hematopoietic disorders characterized by the mutations in three types of molecular markers, with emphasis on Janus kinase 2 gene mutation (JAK2V617F). The MPN bone marrow stem cell niche is a site of chronic inflammation, with commonly increased cells of myeloid lineage, including neutrophils. The MPN neutrophils are characterized by the upregulation of JAK target genes. Additionally, MPN neutrophils display malignant nature, they are in a state of activation, and with deregulated apoptotic machinery. In other words, neutrophils deserve to be placed in the midst of major events in MPN. Our crucial interest in this review is better understanding of how neutrophils die in MPN mirrored by defects in apoptosis and to what possible extent they can contribute to MPN pathophysiology. We tend to expect that reduced neutrophil apoptosis will establish a pathogenic link to chronic inflammation in MPN.


Assuntos
Neoplasias Hematológicas/imunologia , Imunidade Inata , Transtornos Mieloproliferativos/imunologia , Neutrófilos/imunologia , Substituição de Aminoácidos , Animais , Doença Crônica , Neoplasias Hematológicas/genética , Humanos , Inflamação/genética , Inflamação/imunologia , Janus Quinase 2/genética , Janus Quinase 2/imunologia , Mutação de Sentido Incorreto , Transtornos Mieloproliferativos/genética
6.
Biomolecules ; 11(11)2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34827560

RESUMO

In several systems, hydroxyurea has been shown to trigger nitric oxide (NO) release or activation of NO synthase (NOS). To elucidate this duality in its pharmacological effects, during myelosuppression, we individually examined hydroxyurea's (NO releasing agent) and NO metabolites' (stable NO degradation products) effects on erythroid colony growth and NOS/NO levels in mice using NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). Hydroxyurea and nitrite/nitrate decreased the bone marrow cellularity that was blocked by PTIO only for the NO metabolites. Hydroxyurea inhibition of colony-forming unit-erythroid (CFU-E) formation and reticulocytes was reversed by PTIO. Moreover, hydroxyurea, through a negative feedback mechanism, reduced inducible NOS (iNOS) expressing cells in CFU-E, also prevented by PTIO. Nitrate inhibition of burst-forming units-erythroid (BFU-E) colony growth was blocked by PTIO, but not in mature CFU-E. The presented results reveal that NO release and/or production mediates the hydroxyurea inhibition of mature erythroid colony growth and the frequency of iNOS immunoreactive CFU-E.


Assuntos
Óxido Nítrico Sintase , Animais , Hidroxiureia , Camundongos , Óxido Nítrico
7.
J Pers Med ; 11(11)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34834400

RESUMO

Hydroxyurea (HU) is an antineoplastic agent that functions as an antimetabolite compound by inhibiting the ribonucleotide reductase. HU acts mainly as a cytostatic drug that through DNA replication stress may trigger a premature senescence-like cell phenotype, though its influence on bone marrow-derived mesenchymal stem/stromal cell (BMMSC) functions has not elucidated yet. Our results indicate that HU inhibits the growth of human BMMSC alongside senescence-like changes in both morphology and replicative potential, provokes cell cycle arrest at the S phase without affecting cellular viability and induces the expression of senescence-associated ß-galactosidase and p16INK4. Moreover, HU-induced senescent BMMSC, although they did not change MSC markers expression, exhibited reduced capacity osteogenic and adipogenic differentiation. Conversely, HU treatment increased immunoregulatory functions of BMMSC compared with untreated cells and determined by T-cell proliferation. Interestingly, HU did not influence the capacity of BMMSC to induce monocytic myeloid-derived suppressor cells. Thus, these results suggest that HU improves the BMMSC functions on the T-cell inhibition and preserves their interaction with myeloid cell compartment. Mechanistically, BMMSC under HU treatment displayed a downregulation of mTOR and p38 MAPK signaling that may explain the reduced cell differentiation and increased immunomodulation activities. Together, the results obtained in this investigation suggest that HU by inducing senescence-like phenotype of BMMSC influences their cellular differentiation and immunoregulatory functions.

8.
PLoS One ; 15(11): e0242838, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33227029

RESUMO

With the wake of the COVID-19 pandemic, the question of society's capability to deal with an acute health crisis is, once again, brought to the forefront. In the core is the need to broaden the perspective on the determinants of a country's ability to cope with the spread of the virus. This paper is about bringing together diverse aspects of readiness and initial reaction to a COVID-19 outbreak. We proposed an integrated evaluation framework which encapsulates six dimensions of readiness and initial reaction. Using a specific multi-level outranking method, we analysed how these dimensions affect the relative positioning of European countries in the early stages of the COVID-19 outbreak. The results revealed that the order of countries based on our six-dimensional assessment framework is significantly reminiscent of the actual positioning of countries in terms of COVID-19 morbidity and mortality in the initial phase of the pandemic. Our findings confirm that only when a country's readiness is complemented by an appropriate societal reaction we can expect a less severe outcome. Moreover, our study revealed different patterns of performance between former communist Eastern European and Western European countries.


Assuntos
COVID-19/epidemiologia , COVID-19/prevenção & controle , Saúde Global , Pandemias/prevenção & controle , SARS-CoV-2 , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/diagnóstico , COVID-19/virologia , Europa (Continente)/epidemiologia , Feminino , Regulamentação Governamental , Humanos , Masculino , Programas de Rastreamento/métodos , Pessoa de Meia-Idade , Isolamento de Pacientes/legislação & jurisprudência , Isolamento de Pacientes/métodos , Distanciamento Físico , Quarentena/legislação & jurisprudência , Quarentena/métodos , Fatores de Risco , Adulto Jovem
9.
Cell Biochem Funct ; 38(4): 362-372, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31885098

RESUMO

This study has been performed to determine the mechanism of activation of the myeloid related S100A proteins by inflammatory cytokines in myeloproliferative neoplasm (MPN). Besides microarray analysis of MPN-derived CD34+ cells, we analysed the pro-inflammatory IL6 and anti-inflammatory IL10 dependence of NF-κB, PI3K-AKT, and JAK-STAT signalling during induction of S100A proteins in mononuclear cells of MPN, by immunoblotting and flow cytometry. We observed the reduced gene expression linked to NF-κB and inflammation signalling in MPN-derived CD34+ cells. Both IL6 and IL10 reduced S100A8 and 100A9 protein levels mediated via NF-κB and PI3K signalling, respectively, in mononuclear cells of essential thrombocythemia (ET). We also determined the increased percentage of S100A8 and S100A9 positive granulocytes in ET and primary myelofibrosis, upgraded by the JAK2V617F mutant allele burden. S100A8/9 heterodimer induced JAK1/2-dependent mitotic arrest of the ET-derived granulocytes. SIGNIFICANCE OF THE STUDY: We demonstrated that inflammation reduced the myeloid related S100A8/9 proteins by negative feedback mechanism in ET. S100A8/9 can be a diagnostic marker of inflammation in MPN, supported by the concomitant NF-κB and JAK1/2 signalling inhibition in regulation of myeloproliferation and therapy of MPN.


Assuntos
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Interleucina-6/metabolismo , Leucócitos Mononucleares/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Trombocitemia Essencial/metabolismo , Substituição de Aminoácidos , Calgranulina A/genética , Calgranulina B/genética , Feminino , Humanos , Interleucina-6/genética , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Leucócitos Mononucleares/patologia , Masculino , Mutação de Sentido Incorreto , NF-kappa B/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Trombocitemia Essencial/genética , Trombocitemia Essencial/patologia
10.
Blood ; 134(21): 1832-1846, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31511238

RESUMO

Increased energy requirement and metabolic reprogramming are hallmarks of cancer cells. We show that metabolic alterations in hematopoietic cells are fundamental to the pathogenesis of mutant JAK2-driven myeloproliferative neoplasms (MPNs). We found that expression of mutant JAK2 augmented and subverted metabolic activity of MPN cells, resulting in systemic metabolic changes in vivo, including hypoglycemia, adipose tissue atrophy, and early mortality. Hypoglycemia in MPN mouse models correlated with hyperactive erythropoiesis and was due to a combination of elevated glycolysis and increased oxidative phosphorylation. Modulating nutrient supply through high-fat diet improved survival, whereas high-glucose diet augmented the MPN phenotype. Transcriptomic and metabolomic analyses identified numerous metabolic nodes in JAK2-mutant hematopoietic stem and progenitor cells that were altered in comparison with wild-type controls. We studied the consequences of elevated levels of Pfkfb3, a key regulatory enzyme of glycolysis, and found that pharmacological inhibition of Pfkfb3 with the small molecule 3PO reversed hypoglycemia and reduced hematopoietic manifestations of MPNs. These effects were additive with the JAK1/2 inhibitor ruxolitinib in vivo and in vitro. Inhibition of glycolysis by 3PO altered the redox homeostasis, leading to accumulation of reactive oxygen species and augmented apoptosis rate. Our findings reveal the contribution of metabolic alterations to the pathogenesis of MPNs and suggest that metabolic dependencies of mutant cells represent vulnerabilities that can be targeted for treating MPNs.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Janus Quinase 2/genética , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Animais , Humanos , Camundongos , Mutação
11.
FEBS J ; 286(18): 3647-3663, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31090259

RESUMO

Hydroxyurea (HU) is a nonalkylating antineoplastic agent used in the treatment of hematological malignancies. HU is a DNA replication stress inducer, and as such, it may induce a premature senescence-like cell phenotype; however, its repercussion on bystander cell proliferation has not been revealed so far. Our results indicate that HU strongly inhibited peripheral blood mesenchymal stromal cells (PBMSC) proliferation by cell cycle arrest in S phase, and that, consequently, PBMSC acquire senescence-related phenotypical changes. HU-treated PBMSC display increased senescence-associated ß-galactosidase levels and p16INK4 expression, as well as DNA damage response and genotoxic effects, evidenced by expression of γH2A.X and micronuclei. Moreover, HU-induced PBMSC senescence is mediated by increased reactive oxygen species (ROS) levels, as demonstrated by the inhibition of senescence markers in the presence of ROS scavenger N-acetylcysteine and NADPH oxidase inhibitor Apocynin. To determine the HU-induced bystander effect, we used the JAK2V617F-positive human erythroleukemia 92.1.7 (HEL) cells. Co-culture with HU-induced senescent PBMSC (HU-S-PBMSC) strongly inhibited bystander HEL cell proliferation, and this effect is mediated by both ROS and transforming growth factor (TGF)-ß expression. Besides induction of premature senescence, HU educates PBMSC toward an inhibitory phenotype of HEL cell proliferation. Finally, our study contributes to the understanding of the role of HU-induced PBMSC senescence as a potential adjuvant in hematological malignancy therapies.


Assuntos
Senescência Celular/efeitos dos fármacos , Hidroxiureia/farmacologia , Janus Quinase 2/genética , Leucemia Eritroblástica Aguda/tratamento farmacológico , Fator de Crescimento Transformador beta/genética , Efeito Espectador/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Eritroblástica Aguda/genética , Leucemia Eritroblástica Aguda/patologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco de Sangue Periférico/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
12.
Cell Biol Int ; 43(2): 192-206, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30571852

RESUMO

Myeloproliferative neoplasms (MPNs) are developing resistance to therapy by JAK1/2 inhibitor ruxolitinib. To explore the mechanism of ruxolitinib's limited effect, we examined the JAK1/2 mediated induction of proliferation related ERK1/2 and AKT signaling by proinflammatory interleukin-6 (IL-6) in MPN granulocytes and JAK2V617F mutated human erythroleukemia (HEL) cells. We found that JAK1/2 or JAK2 inhibition prevented the IL-6 activation of STAT3 and AKT pathways in polycythemia vera and HEL cells. Further, we showed that these inhibitors also blocked the IL-6 activation of the AKT pathway in primary myelofibrosis (PMF). Only JAK1/2 inhibitor ruxolitinib largely activated ERK1/2 signaling in essential thrombocythemia and PMF (up to 4.6 fold), with a more prominent activation in JAK2V617F positive granulocytes. Regarding a cell cycle, we found that IL-6 reduction of HEL cells percentage in G2M phase was reversed by ruxolitinib (2.6 fold). Moreover, ruxolitinib potentiated apoptosis of PMF granulocytes (1.6 fold). Regarding DNA replication, we found that ruxolitinib prevented the IL-6 augmentation of MPN granulocytes frequency in the S phase of the cell cycle (up to 2.9 fold). The inflammatory stimulation induces a cross-talk between the proliferation linked pathways, where JAK1/2 inhibition is compensated by the activation of the ERK1/2 pathway during IL-6 stimulation of DNA replication.


Assuntos
Replicação do DNA/efeitos dos fármacos , Interleucina-6/farmacologia , Janus Quinase 1/metabolismo , Janus Quinase 2/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transtornos Mieloproliferativos/patologia , Adulto , Idoso , Antígenos CD34/metabolismo , Linhagem Celular Tumoral , Feminino , Granulócitos/citologia , Granulócitos/efeitos dos fármacos , Granulócitos/metabolismo , Humanos , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/genética , Masculino , Pessoa de Meia-Idade , Transtornos Mieloproliferativos/metabolismo , Nitrilas , Fosforilação/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único , Pirazóis/farmacologia , Pirimidinas , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Fatores de Transcrição STAT/metabolismo
13.
Ultrastruct Pathol ; 42(6): 498-507, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30582392

RESUMO

In accordance with increased proliferation in myeloproliferative neoplasm (MPN), the goal is to evaluate the immunoexpression of: ß-catenin, PPAR-γ and Ki67 protein, to compare them with bone marrow ultrastructural characteristics in patients with MPN. Immunoexpression and electron microscopy of bone marrow was analyzed in 30 Ph-negative MPN patients, including per 10 patients with polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF). The quantity of ß-catenin immunoreactive cells was significantly higher in PV then in ET (p < 0.01) or PMF group of patients (p < 0.01) and also in ET versus PMF group of patients (p < 0.01). Erythroid lineage showed absent ß-catenin staining without immunoreactivity in nucleus. In contrast, immunoreactivity for PPAR-γ was localized mostly in megakaryocytes and the highest number of PPAR-γ immunopositive cells was detected in PMF group of patients. In addition, the proliferative Ki67 index was significantly increased in the PMF and PV patients compared to patients with ET. Also, the megakaryocytes showed abnormal maturation in PMF group of patients as determined by ultrastructural analysis. These results indicated that PV dominantly expressed ß-catenin and proliferation marker Ki67 in bone marrow, while PMF is linked preferentially to PPAR-γ immunopositive megakaryocytes characterized by abnormal maturation.


Assuntos
Medula Óssea/metabolismo , Transtornos Mieloproliferativos/metabolismo , PPAR gama/metabolismo , beta Catenina/metabolismo , Adulto , Idoso , Feminino , Humanos , Imuno-Histoquímica/métodos , Masculino , Megacariócitos/metabolismo , Pessoa de Meia-Idade , Policitemia Vera/metabolismo , Mielofibrose Primária/metabolismo
14.
Cell Oncol (Dordr) ; 41(5): 541-553, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29946821

RESUMO

PURPOSE: Previously, the family of S100A proteins has been found to be associated with inflammation and myelopoiesis and to be able to induce or support myeloproliferation during chronic inflammation. Here, we studied the inflammatory myeloid-related proteins S100A4, S100A8, S100A9 and S100A12 in myeloproliferative neoplasms (MPNs) in order to assess the involvement of chronic inflammation in the pathogenesis of MPN. METHODS: We analyzed the S100A4, S100A8, S100A9 and S100A12 mRNA and protein levels in the bone marrow and circulation of 140 patients with MPN and 15 healthy controls using Western blotting, microarray-based mRNA expression profiling and ELISA assays, respectively. In addition we performed functional studies on the proliferation-related AKT and ERK1/2 signaling pathways in MPN-derived granulocytes using Western blotting and proteomic analyses. RESULTS: We found that the S100A mRNA levels were increased in MPN patient-derived circulatory CD34+ cells, and that their protein expression levels were also augmented in their granulocytes and bone marrow stroma cells, depending on the JAK2V617F mutation allele burden. We also found that calreticulin (CALR) mutations were related to reduced S100A8 plasma levels in primary myelofibrosis (PMF). The S100A8 plasma levels were found to be increased in MPN, the S100A9 plasma levels in PMF and essential thrombocythemia (ET), and the S100A12 plasma levels in polycythemia vera (PV). These S100A plasma levels showed a positive correlation with the systemic inflammation marker IL-8, as well as with the numbers of leukocytes and thrombocytes, depending on the JAK2V617F mutation status. Additionally, we found that heterodimeric S100A8/9 can inhibit the AKT pathway in MPN-derived granulocytes mediated by the Toll-like receptor 4 (TLR4), depending on the CALR mutation status. Conversely, we found that blocking of the receptor for advanced glycation end products (RAGE) increased the S100A8/9-mediated inhibition of AKT signaling in the MPN-derived granulocytes. Moreover, we found that heterodimeric S100A8/9 generally induced TLR4-mediated ERK1/2 dephosphorylation proportionally to the JAK2V617F mutation allele burden. TLR4/RAGE blocking prevented the S100A8/9-mediated inhibition of ERK1/2 phosphorylation in PV. CONCLUSIONS: From our data we conclude that the S100A8 and S100A9 granulocyte and plasma levels are increased in MPN patients, along with inflammation markers, depending on their JAK2V617F mutation allele burden. We also found that S100A8/9-mediated inhibition of the proliferation-related AKT and ERK1/2 signaling pathways can be decreased by CALR mutation-dependent TLR4 blocking and increased by RAGE inhibition in MPN.


Assuntos
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Transtornos Mieloproliferativos/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptor 4 Toll-Like/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Calgranulina A/genética , Calgranulina B/genética , Proliferação de Células/genética , Proliferação de Células/fisiologia , Feminino , Humanos , Imuno-Histoquímica , Interleucina-8/metabolismo , Masculino , Pessoa de Meia-Idade , Transtornos Mieloproliferativos/genética , Receptor para Produtos Finais de Glicação Avançada/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/genética , Adulto Jovem
15.
Mol Cancer Res ; 15(7): 852-861, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28314843

RESUMO

Apart from well-known genetic abnormalities, several studies have reported variations in protein expression in Philadelphia-negative myeloproliferative neoplasm (MPN) patients that could contribute toward their clinical phenotype. In this context, a quantitative mass spectrometry proteomics protocol was used to identify differences in the granulocyte proteome with the goal to characterize the pathogenic role of aberrant protein expression in MPNs. LC/MS-MS (LTQ Orbitrap) coupled to iTRAQ labeling showed significant and quantitative differences in protein content among various MPN subtypes [polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF)], and according to the genetic status of JAK2 (JAK2V617F presence and JAK2V617F allele burden). A number of differentially expressed proteins were identified, with the most frequent being members of the RAS GTPase family and oxidative stress regulatory proteins. Subsequent analysis found that calreticulin (CALR), known to be involved in calcium homeostasis and apoptotic signaling, was overexpressed in JAK2V617F granulocytes compared with JAK2 wild type and independently of the JAK2V617F allele burden. Finally, it was demonstrated, in a Ba/F3 cell model, that increased calreticulin expression was directly linked to JAK2V617F and could be regulated by JAK2 kinase inhibitors.Implications: In conclusion, these results reveal proteome alterations in MPN granulocytes depending on the phenotype and genotype of patients, highlighting new oncogenic mechanisms associated with JAK2 mutations and overexpression of calreticulin. Mol Cancer Res; 15(7); 852-61. ©2017 AACR.


Assuntos
Calreticulina/genética , Janus Quinase 2/genética , Policitemia Vera/genética , Mielofibrose Primária/genética , Trombocitemia Essencial/genética , Éxons , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Heterogeneidade Genética , Genótipo , Granulócitos/metabolismo , Humanos , Masculino , Mutação , Policitemia Vera/sangue , Policitemia Vera/patologia , Mielofibrose Primária/sangue , Mielofibrose Primária/patologia , Proteoma/genética , Trombocitemia Essencial/sangue , Trombocitemia Essencial/patologia
16.
Mol Carcinog ; 56(2): 567-579, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27341002

RESUMO

It has been shown that angiogenesis and inflammation play an important role in development of most hematological malignancies including the myeloproliferative neoplasm (MPN). The aim of this study was to investigate and correlate the levels of key angiogenic molecules such as hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS) in peripheral blood and bone marrow cells of MPN patients, along with JAK2V617F mutation allele burden and effects of therapy. HIF-1α and VEGF gene expression were decreased, while eNOS mRNA levels were increased in granulocytes of MPN patients. Furthermore, positively correlated and increased VEGF and eNOS protein levels were in negative correlation with HIF-1α levels in granulocytes of MPN patients. According to immunoblotting, the generally augmented angiogenic factors demonstrated JAK2V617F allele burden dependence only in granulocytes of PMF. The angiogenic factors were largely reduced after hydroxyurea therapy in granulocytes of MPN patients. Levels of eNOS protein expression were stimulated by Calreticulin mutations in granulocytes of essential thrombocythemia. Immunocytochemical analyses of CD34+ cells showed a more pronounced enhancement of angiogenic factors than in granulocytes. Increased gene expression linked to the proinflammatory TGFß and MAPK signaling pathways were detected in CD34+ cells of MPN patients. In conclusion, the angiogenesis is increased in several cell types of MPN patients supported by the transcriptional activation of inflammation-related target genes, and is not limited to bone marrow stroma cells. It also appears that some of the benefit of hydroxyurea therapy of the MPN is mediated by effects on angiogenic factors. © 2016 Wiley Periodicals, Inc.


Assuntos
Antígenos CD34/análise , Medula Óssea/patologia , Granulócitos/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/sangue , Transtornos Mieloproliferativos/sangue , Óxido Nítrico Sintase Tipo III/sangue , Fator A de Crescimento do Endotélio Vascular/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Calreticulina/genética , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/análise , Janus Quinase 2/genética , Masculino , Pessoa de Meia-Idade , Mutação , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Neovascularização Patológica/sangue , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Óxido Nítrico Sintase Tipo III/análise , Fator A de Crescimento do Endotélio Vascular/análise
17.
Ann Hematol ; 96(3): 393-404, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27924369

RESUMO

Increased angiogenesis in BCR-ABL1 negative myeloproliferative neoplasms (MPNs) has been recognized, but its connection with clinical and molecular markers needs to be defined. The aims of study were to (1) assess bone marrow (BM) angiogenesis measured by microvessel density (MVD) using CD34 and CD105 antibodies; (2) analyze correlation of MVD with plasma angiogenic factors including vascular endothelial growth factor, basic fibroblast growth factor, and interleukin-8; (3) examine the association of MVD with clinicopathological and molecular markers. We examined 90 de novo MPN patients (30 polycythemia vera (PV), primary myelofibrosis (PMF), essential thrombocythemia (ET)) and 10 age-matched controls. MVD was analyzed by immunohistochemistry "hot spot" method, angiogenic factors by immunoassay and JAK2V617F, and CALR mutations by DNA sequencing and allelic PCR. MVD was significantly increased in MPNs compared to controls (PMF > PV > ET). Correlation between MVD and plasma angiogenic factors was found in MPNs. MVD was significantly increased in patients with JAK2V617F mutation and correlated with JAK2 mutant allele burden (CD34-MVD: ρ = 0.491, p < 0.001; CD105-MVD: ρ = 0.276, p = 0.02) but not with CALR mutation. MVD correlated with leukocyte count, serum lactate dehydrogenase, hepatomegaly, and splenomegaly. BM fibrosis was significantly associated with CD34-MVD, CD105-MVD, interleukin-8, and JAK2 mutant allele burden. JAK2 homozygote status had positive predictive value (100%) for BM fibrosis. Patients with prefibrotic PMF had significantly higher MVD than patients with ET, and we could recommend MVD to be additional histopathological marker to distinguish these two entities. This study also highlights the strong correlation of MVD with plasma angiogenic factors, JAK2 mutant allele burden, and BM fibrosis in MPNs.


Assuntos
Indutores da Angiogênese/sangue , Medula Óssea/irrigação sanguínea , Medula Óssea/patologia , Microvasos/patologia , Transtornos Mieloproliferativos/sangue , Transtornos Mieloproliferativos/patologia , Adulto , Idoso , Medula Óssea/metabolismo , Feminino , Humanos , Masculino , Microvasos/metabolismo , Pessoa de Meia-Idade , Neovascularização Patológica/sangue , Neovascularização Patológica/patologia , Estudos Prospectivos
18.
Mediators Inflamm ; 2015: 453020, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26491227

RESUMO

The recent JAK1/2 inhibitor trial in myeloproliferative neoplasms (MPNs) showed that reducing inflammation can be more beneficial than targeting gene mutants. We evaluated the proinflammatory IL-6 cytokine and JAK-STAT signaling pathway related genes in circulating CD34(+) cells of MPNs. Regarding laboratory data, leukocytosis has been observed in polycythemia vera (PV) and JAK2V617F mutation positive versus negative primary myelofibrosis (PMF) patients. Moreover, thrombocytosis was reduced by JAK2V617F allele burden in essential thrombocythemia (ET) and PMF. 261 significantly changed genes have been detected in PV, 82 in ET, and 94 genes in PMF. The following JAK-STAT signaling pathway related genes had augmented expression in CD34(+) cells of MPNs: CCND3 and IL23A regardless of JAK2V617F allele burden; CSF3R, IL6ST, and STAT1/2 in ET and PV with JAK2V617F mutation; and AKT2, IFNGR2, PIM1, PTPN11, and STAT3 only in PV. STAT5A gene expression was generally reduced in MPNs. IL-6 cytokine levels were increased in plasma, as well as IL-6 protein levels in bone marrow stroma of MPNs, dependent on JAK2V617F mutation presence in ET and PMF patients. Therefore, the JAK2V617F mutant allele burden participated in inflammation biomarkers induction and related signaling pathways activation in MPNs.


Assuntos
Interleucina-6/sangue , Janus Quinase 1/sangue , Transtornos Mieloproliferativos/imunologia , Fatores de Transcrição STAT/sangue , Alelos , Antígenos CD34/metabolismo , Biomarcadores/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imuno-Histoquímica , Inflamação , Leucocitose/complicações , Masculino , Mutação , Transtornos Mieloproliferativos/sangue , Análise de Sequência com Séries de Oligonucleotídeos , Policitemia Vera/sangue , Policitemia Vera/imunologia , Mielofibrose Primária/sangue , Mielofibrose Primária/imunologia , Análise de Sequência de DNA , Transdução de Sinais , Trombocitemia Essencial/sangue , Trombocitemia Essencial/imunologia , Trombocitose/sangue , Trombocitose/imunologia
19.
Blood Cells Mol Dis ; 55(4): 373-81, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26460262

RESUMO

PURPOSE: We compared the gene expression profile of peripheral blood CD34(+) cells and granulocytes in subjects with chronic myeloid leukemia (CML), with the accent on signaling pathways affected by BCR-ABL oncogene. METHODS: The microarray analyses have been performed in circulating CD34(+) cells and granulocytes from peripheral blood of 7 subjects with CML and 7 healthy donors. All studied BCR-ABL positive CML patients were in chronic phase, with a mean value of 2012±SD of CD34(+)cells/µl in peripheral blood. RESULTS: The gene expression profile was more prominent in CML CD34(+) cells (3553 genes) compared to granulocytes (2701 genes). The 41 and 39 genes were significantly upregulated in CML CD34(+) cells (HINT1, TXN, SERBP1) and granulocytes, respectively. BCR-ABL oncogene activated PI3K/AKT and MAPK signaling through significant upregulation of PTPN11, CDK4/6, and MYC and reduction of E2F1, KRAS, and NFKBIA gene expression in CD34(+) cells. Among genes linked to the inhibition of cellular proliferation by BCR-ABL inhibitor Imatinib, the FOS and STAT1 demonstrated significantly decreased expression in CML. CONCLUSION: The presence of BCR-ABL fusion gene doubled the expression quantity of genes involved in the regulation of cell cycle, proliferation and apoptosis of CD34(+) cells. These results determined the modified genes in PI3K/AKT and MAPK signaling of CML subjects.


Assuntos
Antígenos CD34/metabolismo , Regulação Leucêmica da Expressão Gênica , Granulócitos/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Células-Tronco Neoplásicas/metabolismo , Transcriptoma , Biomarcadores , Estudos de Casos e Controles , Análise por Conglomerados , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Perfilação da Expressão Gênica , Granulócitos/patologia , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Células-Tronco Neoplásicas/patologia , Transdução de Sinais
20.
PLoS One ; 10(8): e0135463, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26275051

RESUMO

The gene and protein expression profiles in myeloproliferative neoplasms (MPNs) may reveal gene and protein markers of a potential clinical relevance in diagnosis, treatment and prediction of response to therapy. Using cDNA microarray analysis of 25,100 unique genes, we studied the gene expression profile of CD34+ cells and granulocytes obtained from peripheral blood of subjects with essential thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF). The microarray analyses of the CD34+ cells and granulocytes were performed from 20 de novo MPN subjects: JAK2 positive ET, PV, PMF subjects, and JAK2 negative ET/PMF subjects. The granulocytes for proteomic studies were pooled in 4 groups: PV with JAK2 mutant allele burden above 80%, ET with JAK2 mutation, PMF with JAK2 mutation and ET/PMF with no JAK2 mutation. The number of differentially regulated genes was about two fold larger in CD34+ cells compared to granulocytes. Thirty-six genes (including RUNX1, TNFRSF19) were persistently highly expressed, while 42 genes (including FOXD4, PDE4A) were underexpressed both in CD34+ cells and granulocytes. Using proteomic studies, significant up-regulation was observed for MAPK and PI3K/AKT signaling regulators that control myeloid cell apoptosis and proliferation: RAC2, MNDA, S100A8/9, CORO1A, and GNAI2. When the status of the mTOR signaling pathway related genes was analyzed, PI3K/AKT regulators were preferentially up-regulated in CD34+ cells of MPNs, with down-regulated major components of the protein complex EIF4F. Molecular profiling of CD34+ cells and granulocytes of MPN determined gene expression patterns beyond their recognized function in disease pathogenesis that included dominant up-regulation of PI3K/AKT signaling.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Hematológicas/metabolismo , Células Mieloides/metabolismo , Transtornos Mieloproliferativos/metabolismo , Proteínas de Neoplasias/biossíntese , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Feminino , Neoplasias Hematológicas/genética , Humanos , Masculino , Células Mieloides/patologia , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Proteínas de Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos , Proteômica , Serina-Treonina Quinases TOR/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA