Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Pharmaceutics ; 15(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38140000

RESUMO

RNA interference can be applied to different target genes for treating a variety of diseases, but an appropriate delivery system is necessary to ensure the transport of intact siRNAs to the site of action. In this study, cellulose was dually modified to create a non-viral vector for HDAC3 short interfering RNA (siRNA) transfer into cells. A guanidinium group introduced positive charges into the cellulose to allow complexation of negatively charged genetic material. Furthermore, a biotin group fixed by a polyethylene glycol (PEG) spacer was attached to the polymer to allow, if required, the binding of targeting ligands. The resulting polyplexes with HDAC3 siRNA had a size below 200 nm and a positive zeta potential of up to 15 mV. For N/P ratio 2 and higher, the polymer could efficiently complex siRNA. Nanoparticles, based on this dually modified derivative, revealed a low cytotoxicity. Only minor effects on the endothelial barrier integrity and a transfection efficiency in HEK293 cells higher than Lipofectamine 2000TM were found. The uptake and release of the polyplexes were confirmed by immunofluorescence imaging. This study indicates that the modified biopolymer is an auspicious biocompatible non-viral vector with biotin as a promising moiety.

2.
Front Immunol ; 14: 1105181, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911665

RESUMO

Hemolytic-uremic syndrome (HUS) can occur as a complication of an infection with Shiga-toxin (Stx)-producing Escherichia coli. Patients typically present with acute kidney injury, microangiopathic hemolytic anemia and thrombocytopenia. There is evidence that Stx-induced renal damage propagates a pro-inflammatory response. To date, therapy is limited to organ-supportive strategies. Bruton's tyrosine kinase (BTK) plays a pivotal role in recruitment and function of immune cells and its inhibition was recently shown to improve renal function in experimental sepsis and lupus nephritis. We hypothesized that attenuating the evoked immune response by BTK-inhibitors (BTKi) ameliorates outcome in HUS. We investigated the effect of daily oral administration of the BTKi ibrutinib (30 mg/kg) and acalabrutinib (3 mg/kg) in mice with Stx-induced HUS at day 7. After BTKi administration, we observed attenuated disease progression in mice with HUS. These findings were associated with less BTK and downstream phospholipase-C-gamma-2 activation in the spleen and, subsequently, a reduced renal invasion of BTK-positive cells including neutrophils. Only ibrutinib treatment diminished renal invasion of macrophages, improved acute kidney injury and dysfunction (plasma levels of NGAL and urea) and reduced hemolysis (plasma levels of bilirubin and LDH activity). In conclusion, we report here for the first time that BTK inhibition attenuates the course of disease in murine HUS. We suggest that the observed reduction of renal immune cell invasion contributes - at least in part - to this effect. Further translational studies are needed to evaluate BTK as a potential target for HUS therapy to overcome currently limited treatment options.


Assuntos
Injúria Renal Aguda , Síndrome Hemolítico-Urêmica , Escherichia coli Shiga Toxigênica , Camundongos , Animais , Tirosina Quinase da Agamaglobulinemia , Rim/fisiologia , Células Epiteliais , Injúria Renal Aguda/complicações
3.
Ann Surg ; 277(3): e624-e633, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35129479

RESUMO

OBJECTIVE: The aim of this study was to investigate (a) the potential of the Bruton's tyrosine kinase (BTK) inhibitors acalabrutinib and fenebrutinib to reduce multiple organ dysfunction syndrome (MODS) in acute (short-term and long-term follow-up) hemorrhagic shock (HS) rat models and (b) whether treatment with either acalabrutinib or fenebrutinib attenuates BTK, NF-κB and NLRP3 activation in HS. BACKGROUND: The MODS caused by an excessive systemic inflammatory response following trauma is associated with a high morbidity and mortality. The protein BTK is known to play a role in the activation of the NLRP3 inflammasome, which is a key component of the innate inflammatory response. However, its role in trauma-hemorrhage is unknown. METHODS: Acute HS rat models were performed to determine the influence of acalabrutinib or fenebrutinib on MODS. The activation of BTK, NF-κB and NLRP3 pathways were analyzed by western blot in the kidney. RESULTS: We demonstrated that (a) HS caused organ injury and/or dysfunction and hypotension (post-resuscitation) in rats, while (b) treatment of HS-rats with either acalabrutinib or fenebrutinib attenuated the organ injury and dysfunction in acute HS models and (c) reduced the activation of BTK, NF- kB and NLRP3 pathways in the kidney. CONCLUSION: Our results point to a role of BTK in the pathophysiology of organ injury and dysfunction caused by trauma/hemorrhage and indicate that BTK inhibitors may be repurposed as a potential therapeutic approach for MODS after trauma and/or hemorrhage.


Assuntos
Choque Hemorrágico , Animais , Ratos , Choque Hemorrágico/complicações , Choque Hemorrágico/tratamento farmacológico , Tirosina Quinase da Agamaglobulinemia , NF-kappa B , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/prevenção & controle , Proteína 3 que Contém Domínio de Pirina da Família NLR
4.
Ann Surg ; 278(1): e137-e146, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35837955

RESUMO

OBJECTIVE: The aim of this study was to investigate (a) the effects of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway inhibitor (baricitinib) on the multiple organ dysfunction syndrome (MODS) in a rat model of hemorrhagic shock (HS) and (b) whether treatment with baricitinib attenuates the activation of JAK/STAT, NF-κB, and NLRP3 caused by HS. BACKGROUND: Posttraumatic MODS, which is in part due to excessive systemic inflammation, is associated with high morbidity and mortality. The JAK/STAT pathway is a regulator of numerous growth factor and cytokine receptors and, hence, is considered a potential master regulator of many inflammatory signaling processes. However, its role in trauma-hemorrhage is unknown. METHODS: An acute HS rat model was performed to determine the effect of baricitinib on MODS. The activation of JAK/STAT, NF-κB, and NLRP3 pathways were analyzed by western blotting in the kidney and liver. RESULTS: We demonstrate here for the first time that treatment with baricitinib (during resuscitation following severe hemorrhage) attenuates the organ injury and dysfunction and the activation of JAK/STAT, NF-κB, and NLRP3 pathways caused by HS in the rat. CONCLUSIONS: Our results point to a role of the JAK/STAT pathway in the pathophysiology of the organ injury and dysfunction caused by trauma/hemorrhage and indicate that JAK inhibitors, such as baricitinib, may be repurposed for the treatment of the MODS after trauma and/or hemorrhage.


Assuntos
Choque Hemorrágico , Transdução de Sinais , Ratos , Animais , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Janus Quinases/metabolismo , Janus Quinases/farmacologia , Choque Hemorrágico/complicações , Choque Hemorrágico/tratamento farmacológico , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/prevenção & controle , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/farmacologia
5.
Front Immunol ; 13: 1010882, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211426

RESUMO

Hemolytic-uremic syndrome (HUS) can occur as a systemic complication of infections with Shiga toxin (Stx)-producing Escherichia coli and is characterized by microangiopathic hemolytic anemia and acute kidney injury. Hitherto, therapy has been limited to organ-supportive strategies. Erythropoietin (EPO) stimulates erythropoiesis and is approved for the treatment of certain forms of anemia, but not for HUS-associated hemolytic anemia. EPO and its non-hematopoietic analog pyroglutamate helix B surface peptide (pHBSP) have been shown to mediate tissue protection via an innate repair receptor (IRR) that is pharmacologically distinct from the erythropoiesis-mediating receptor (EPO-R). Here, we investigated the changes in endogenous EPO levels in patients with HUS and in piglets and mice subjected to preclinical HUS models. We found that endogenous EPO was elevated in plasma of humans, piglets, and mice with HUS, regardless of species and degree of anemia, suggesting that EPO signaling plays a role in HUS pathology. Therefore, we aimed to examine the therapeutic potential of EPO and pHBSP in mice with Stx-induced HUS. Administration of EPO or pHBSP improved 7-day survival and attenuated renal oxidative stress but did not significantly reduce renal dysfunction and injury in the employed model. pHBSP, but not EPO, attenuated renal nitrosative stress and reduced tubular dedifferentiation. In conclusion, targeting the EPO-R/IRR axis reduced mortality and renal oxidative stress in murine HUS without occurrence of thromboembolic complications or other adverse side effects. We therefore suggest that repurposing EPO for the treatment of patients with hemolytic anemia in HUS should be systematically investigated in future clinical trials.


Assuntos
Eritropoetina , Síndrome Hemolítico-Urêmica , Escherichia coli Shiga Toxigênica , Animais , Subunidade beta Comum dos Receptores de Citocinas , Eritropoetina/farmacologia , Síndrome Hemolítico-Urêmica/tratamento farmacológico , Humanos , Camundongos , Oligopeptídeos , Receptores da Eritropoetina , Toxinas Shiga , Suínos
6.
Trials ; 23(1): 737, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056419

RESUMO

BACKGROUND: Despite the intense global research endeavour to improve the treatment of patients with COVID-19, the current therapy remains insufficient, resulting in persisting high mortality. Severe cases are characterised by a systemic inflammatory reaction driven by the release of pro-inflammatory cytokines such as IL-6 and tumour-necrosis-factor alpha (TNF-α). TNF-α-blocking therapies have proved beneficial in patients with chronic inflammatory diseases and could therefore pose a new treatment option in COVID-19. Hitherto, no results from randomised controlled trials assessing the effectiveness and safety of infliximab-a monoclonal antibody targeting TNF-α-in the treatment of COVID-19 have been published. METHODS: In this phase-2 clinical trial, patients with COVID-19 and clinical and laboratory signs of hyperinflammation will be randomised to receive either one dose of infliximab (5 mg/kg body weight) in addition to the standard of care or the standard of care alone. The primary endpoint is the difference in 28-day mortality. Further assessments concern the safety of infliximab therapy in COVID-19 and the influence of infliximab on morbidity and the course of the disease. For the supplementary scientific programme, blood and urine samples are collected to assess concomitant molecular changes. The Ethics Committee of the Friedrich Schiller University Jena (2021-2236-AMG-ff) and the Paul-Ehrlich-Institute (4513/01) approved the study. DISCUSSION: The results of this study could influence the therapy of patients with COVID-19 and affect the course of the disease worldwide, as infliximab is globally available and approved by several international drug agencies. TRIAL REGISTRATION: The trial was registered at clinicaltrials.gov ( NCT04922827 , 11 June 2021) and at EudraCT ( 2021-002098-25 , 19 May 2021).


Assuntos
Tratamento Farmacológico da COVID-19 , Ensaios Clínicos Fase II como Assunto , Humanos , Infliximab/efeitos adversos , Estudos Multicêntricos como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto , SARS-CoV-2 , Resultado do Tratamento , Fator de Necrose Tumoral alfa
7.
BMJ Open ; 12(6): e062592, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35925679

RESUMO

INTRODUCTION: Obesity, defined as a body mass index ≥30 kg/m2, is one of the most prevalent health conditions worldwide. It is part of the metabolic syndrome, which encompasses arterial hypertension, dyslipoproteinaemia and diabetes. Obesity is viewed as a systemic disease with pathophysiological mechanisms on the molecular level. Dysfunction of the mitochondrion and systemic low-grade inflammation are among the proposed causes for the metabolic changes. In severe cases of obesity, laparoscopic sleeve gastrectomy, a bariatric operation, can achieve the desired weight loss and has been associated with clinical outcome improvement. Hitherto, the influence of patients' body composition on mitochondrial function and concomitant metabolic changes has not been fully understood. This study aims to quantify the patient's body composition before and after laparoscopic sleeve gastrectomy and to correlate these findings with changes in mitochondrial oxygen metabolism, metabolome and immune status. METHODS AND ANALYSIS: In this prospective monocentric cohort study, patients undergoing laparoscopic sleeve gastrectomy (n=30) at Jena University Hospital (Germany) will be assessed before surgery and at four time points during a 1-year follow-up. Body composition will be measured by bioimpedance analysis. Non-invasive assessment of mitochondrial oxygen metabolism using protoporphyrin IX-triplet state lifetime technique (PPIX-TSLT) and blood sampling for, among other, metabolomic and immunological analysis, will be performed. The primary outcome is the difference in relative fat mass between the preoperative time point and 6 months postoperatively. Further outcomes comprise longitudinal changes of PPIX-TSLT and metabolic and immunological variables. Outcomes will be assessed using paired t-tests, Wilcoxon signed-rank tests and regression analyses. ETHICS AND DISSEMINATION: The study was approved by the Ethics Committee of Friedrich Schiller University Jena (2018-1192-BO). Written informed consent will be obtained from all patients prior to enrolment in the study. The results will be published in peer-reviewed journals and presented at appropriate conferences. TRIAL REGISTRATION NUMBER: DRKS00015891.


Assuntos
Cirurgia Bariátrica , Derivação Gástrica , Laparoscopia , Obesidade Mórbida , Composição Corporal , Estudos de Coortes , Derivação Gástrica/métodos , Humanos , Laparoscopia/métodos , Metaboloma , Mitocôndrias , Obesidade/cirurgia , Obesidade Mórbida/cirurgia , Oxigênio , Estudos Prospectivos , Resultado do Tratamento
8.
Sci Rep ; 12(1): 504, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017615

RESUMO

We provide a descriptive characterization of the unfolded protein response (UPR) in skeletal muscle of human patients with peritoneal sepsis and a sepsis model of C57BL/6J mice. Patients undergoing open surgery were included in a cross-sectional study and blood and skeletal muscle samples were taken. Key markers of the UPR and cluster of differentiation 68 (CD68) as surrogate of inflammatory injury were evaluated by real-time PCR and histochemical staining. CD68 mRNA increased with sepsis in skeletal muscle of patients and animals (p < 0.05). Mainly the inositol-requiring enzyme 1α branch of the UPR was upregulated as shown by elevated X-box binding-protein 1 (XBP1u) and its spliced isoform (XBP1s) mRNA (p < 0.05, respectively). Increased expression of Gadd34 indicated activation of PRKR-Like Endoplasmic Reticulum Kinase (PERK) branch of the UPR, and was only observed in mice (p < 0.001) but not human study subjects. Selected cell death signals were upregulated in human and murine muscle, demonstrated by increased bcl-2 associated X protein mRNA and TUNEL staining (p < 0.05). In conclusion we provide a first characterization of the UPR in skeletal muscle in human sepsis.


Assuntos
Estresse do Retículo Endoplasmático , Músculo Esquelético/metabolismo , Doenças Peritoneais/fisiopatologia , Sepse/fisiopatologia , Resposta a Proteínas não Dobradas , Idoso , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Doenças Peritoneais/genética , Doenças Peritoneais/metabolismo , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Sepse/genética , Sepse/metabolismo , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
9.
Cells ; 10(7)2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34359991

RESUMO

5'AMP-activated protein kinase (AMPK) is known as metabolic sensor in mammalian cells that becomes activated by an increasing adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio. The heterotrimeric AMPK protein comprises three subunits, each of which has multiple phosphorylation sites, playing an important role in the regulation of essential molecular pathways. By phosphorylation of downstream proteins and modulation of gene transcription AMPK functions as a master switch of energy homeostasis in tissues with high metabolic turnover, such as the liver, skeletal muscle, and adipose tissue. Regulation of AMPK under conditions of chronic caloric oversupply emerged as substantial research target to get deeper insight into the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Evidence supporting the role of AMPK in NAFLD is mainly derived from preclinical cell culture and animal studies. Dysbalanced de novo lipogenesis has been identified as one of the key processes in NAFLD pathogenesis. Thus, the scope of this review is to provide an integrative overview of evidence, in particular from clinical studies and human samples, on the role of AMPK in the regulation of primarily de novo lipogenesis in human NAFLD.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Lipogênese , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Quinases Ativadas por AMP/química , Humanos , Insulina/metabolismo , Modelos Biológicos , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Transdução de Sinais
10.
Front Immunol ; 11: 581758, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33162995

RESUMO

We previously reported the Bruton's tyrosine kinase (BTK) inhibitors ibrutinib and acalabrutinib improve outcomes in a mouse model of polymicrobial sepsis. Now we show that genetic deficiency of the BTK gene alone in Xid mice confers protection against cardiac, renal, and liver injury in polymicrobial sepsis and reduces hyperimmune stimulation ("cytokine storm") induced by an overwhelming bacterial infection. Protection is due in part to enhanced bacterial phagocytosis in vivo, changes in lipid metabolism and decreased activation of NF-κB and the NLRP3 inflammasome. The inactivation of BTK leads to reduced innate immune cell recruitment and a phenotypic switch from M1 to M2 macrophages, aiding in the resolution of sepsis. We have also found that BTK expression in humans is increased in the blood of septic non-survivors, while lower expression is associated with survival from sepsis. Importantly no further reduction in organ damage, cytokine production, or changes in plasma metabolites is seen in Xid mice treated with the BTK inhibitor ibrutinib, demonstrating that the protective effects of BTK inhibitors in polymicrobial sepsis are mediated solely by inhibition of BTK and not by off-target effects of this class of drugs.


Assuntos
Tirosina Quinase da Agamaglobulinemia/metabolismo , Insuficiência de Múltiplos Órgãos/metabolismo , Sepse/metabolismo , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Benzamidas/farmacologia , Modelos Animais de Doenças , Inflamassomos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos CBA , Insuficiência de Múltiplos Órgãos/tratamento farmacológico , Fagocitose/efeitos dos fármacos , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirazinas/farmacologia , Sepse/tratamento farmacológico , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/tratamento farmacológico
11.
Br J Anaesth ; 125(2): 122-132, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32711724

RESUMO

BACKGROUND: Despite several clinical trials on haemodynamic therapy, the optimal intraoperative haemodynamic management for high-risk patients undergoing major abdominal surgery remains unclear. We tested the hypothesis that personalised haemodynamic management targeting each individual's baseline cardiac index at rest reduces postoperative morbidity. METHODS: In this single-centre trial, 188 high-risk patients undergoing major abdominal surgery were randomised to either routine management or personalised haemodynamic management requiring clinicians to maintain personal baseline cardiac index (determined at rest preoperatively) using an algorithm that guided intraoperative i.v. fluid and/or dobutamine administration. The primary outcome was a composite of major complications (European Perioperative Clinical Outcome definitions) or death within 30 days of surgery. Secondary outcomes included postoperative morbidity (assessed by a postoperative morbidity survey), hospital length of stay, mortality within 90 days of surgery, and neurocognitive function assessed after postoperative Day 3. RESULTS: The primary outcome occurred in 29.8% (28/94) of patients in the personalised management group, compared with 55.3% (52/94) of patients in the routine management group (relative risk: 0.54, 95% confidence interval [CI]: 0.38 to 0.77; absolute risk reduction: -25.5%, 95% CI: -39.2% to -11.9%; P<0.001). One patient assigned to the personalised management group, compared with five assigned to the routine management group, died within 30 days after surgery (P=0.097). There were no clinically relevant differences between the two groups for secondary outcomes. CONCLUSIONS: In high-risk patients undergoing major abdominal surgery, personalised haemodynamic management reduces a composite outcome of major postoperative complications or death within 30 days after surgery compared with routine care. CLINICAL TRIAL REGISTRATION: NCT02834377.


Assuntos
Abdome/cirurgia , Débito Cardíaco/fisiologia , Hidratação/métodos , Hemodinâmica/fisiologia , Cuidados Intraoperatórios/métodos , Complicações Pós-Operatórias/prevenção & controle , Idoso , Feminino , Humanos , Tempo de Internação/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/fisiopatologia , Estudos Prospectivos , Risco
12.
Int J Mol Sci ; 21(4)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32069843

RESUMO

Sphingosine 1-phosphate (S1P) is a key bioactive lipid that regulates a myriad of physiological and pathophysiological processes, including endothelial barrier function, vascular tone, vascular inflammation, and angiogenesis. Various S1P receptor subtypes have been suggested to be involved in the regulation of these processes, whereas the contribution of intracellular S1P (iS1P) through intracellular targets is little explored. In this study, we used the human cerebral microvascular endothelial cell line HCMEC/D3 to stably downregulate the S1P lyase (SPL-kd) and evaluate the consequences on endothelial barrier function and on the molecular factors that regulate barrier tightness under normal and inflammatory conditions. The results show that in SPL-kd cells, transendothelial electrical resistance, as a measure of barrier integrity, was regulated in a dual manner. SPL-kd cells had a delayed barrier build up, a shorter interval of a stable barrier, and, thereafter, a continuous breakdown. Contrariwise, a protection was seen from the rapid proinflammatory cytokine-mediated barrier breakdown. On the molecular level, SPL-kd caused an increased basal protein expression of the adherens junction molecules PECAM-1, VE-cadherin, and ß-catenin, increased activity of the signaling kinases protein kinase C, AMP-dependent kinase, and p38-MAPK, but reduced protein expression of the transcription factor c-Jun. However, the only factors that were significantly reduced in TNFα/SPL-kd compared to TNFα/control cells, which could explain the observed protection, were VCAM-1, IL-6, MCP-1, and c-Jun. Furthermore, lipid profiling revealed that dihydro-S1P and S1P were strongly enhanced in TNFα-treated SPL-kd cells. In summary, our data suggest that SPL inhibition is a valid approach to dampenan inflammatory response and augmente barrier integrity during an inflammatory challenge.


Assuntos
Barreira Hematoencefálica/metabolismo , Inflamação/metabolismo , Lisofosfolipídeos/metabolismo , Neovascularização Patológica/genética , Esfingosina/análogos & derivados , Aldeído Liases/genética , Barreira Hematoencefálica/patologia , Linhagem Celular , Quimiocina CCL2/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Inflamação/genética , Inflamação/patologia , Interleucina-6/genética , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Lisofosfolipídeos/genética , Neovascularização Patológica/metabolismo , Transdução de Sinais/genética , Esfingosina/genética , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/genética , Fator de Necrose Tumoral alfa/genética , Molécula 1 de Adesão de Célula Vascular/genética , beta Catenina/genética
13.
Front Med (Lausanne) ; 7: 585462, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33409287

RESUMO

Background: Mitochondria are the key players in aerobic energy generation via oxidative phosphorylation. Consequently, mitochondrial function has implications on physical performance in health and disease ranging from high performance sports to critical illness. The protoporphyrin IX-triplet state lifetime technique (PpIX-TSLT) allows in vivo measurements of mitochondrial oxygen tension (mitoPO2). Hitherto, few data exist on the relation of mitochondrial oxygen metabolism and ergospirometry-derived variables during physical performance. This study investigates the association of mitochondrial oxygen metabolism with gas exchange and blood gas analysis variables assessed during cardiopulmonary exercise testing (CPET) in aerobic and anaerobic metabolic phases. Methods: Seventeen volunteers underwent an exhaustive CPET (graded multistage protocol, 50 W/5 min increase), of which 14 were included in the analysis. At baseline and for every load level PpIX-TSLT-derived mitoPO2 measurements were performed every 10 s with 1 intermediate dynamic measurement to obtain mitochondrial oxygen consumption and delivery (mito V . O2, mito D . O2). In addition, variables of gas exchange and capillary blood gas analyses were obtained to determine ventilatory and lactate thresholds (VT, LT). Metabolic phases were defined in relation to VT1 and VT2 (aerobic:

14.
Front Immunol ; 10: 2129, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552054

RESUMO

Sepsis is one of the most prevalent diseases in the world. The development of cardiac dysfunction in sepsis results in an increase of mortality. It is known that Bruton's tyrosine kinase (BTK) plays a role in toll-like receptor signaling and NLRP3 inflammasome activation, two key components in the pathophysiology of sepsis and sepsis-associated cardiac dysfunction. In this study we investigated whether pharmacological inhibition of BTK (ibrutinib 30 mg/kg and acalabrutinib 3 mg/kg) attenuates sepsis associated cardiac dysfunction in mice. 10-week old male C57BL/6 mice underwent CLP or sham surgery. One hour after surgery mice received either vehicle (5% DMSO + 30% cyclodextrin i.v.), ibrutinib (30 mg/kg i.v.), or acalabrutinib (3 mg/kg i.v.). Mice also received antibiotics and an analgesic at 6 and 18 h. After 24 h, cardiac function was assessed by echocardiography in vivo. Cardiac tissue underwent western blot analysis to determine the activation of BTK, NLRP3 inflammasome and NF-κB pathway. Serum analysis of 33 cytokines was conducted by a multiplex assay. When compared to sham-operated animals, mice subjected to CLP demonstrated a significant reduction in ejection fraction (EF), fractional shortening (FS), and fractional area change (FAC). The cardiac tissue from CLP mice showed significant increases of BTK, NF-κB, and NLRP3 inflammasome activation. CLP animals resulted in a significant increase of serum cytokines and chemokines (TNF-α, IL-6, IFN-γ, KC, eotaxin-1, eotaxin-2, IL-10, IL-4, CXCL10, and CXCL11). Delayed administration of ibrutinib and acalabrutinib attenuated the decline of EF, FS, and FAC caused by CLP and also reduced the activation of BTK, NF-κB, and NLRP3 inflammasome. Both ibrutinib and acalabrutinib significantly suppressed the release of cytokines and chemokines. Our study revealed that delayed intravenous administration of ibrutinib or acalabrutinib attenuated the cardiac dysfunction associated with sepsis by inhibiting BTK, reducing NF-κB activation and the activation of the inflammasome. Cytokines associated with sepsis were significantly reduced by both BTK inhibitors. Acalabrutinib is found to be more potent than ibrutinib and could potentially prove to be a novel therapeutic in sepsis. Thus, the FDA-approved BTK inhibitors ibrutinib and acalabrutinib may be repurposed for the use in sepsis.


Assuntos
Tirosina Quinase da Agamaglobulinemia/metabolismo , Cardiopatias/etiologia , Coração/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Sepse/complicações , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia/efeitos dos fármacos , Tirosina Quinase da Agamaglobulinemia/imunologia , Animais , Benzamidas/farmacologia , Ceco , Modelos Animais de Doenças , Inflamassomos/efeitos dos fármacos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Ligadura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Piperidinas , Punções , Pirazinas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Sepse/imunologia , Sepse/metabolismo
15.
Biochim Biophys Acta Mol Basis Dis ; 1865(4): 774-781, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30660683

RESUMO

Breakdown of the endothelial barrier is a critical step in the development of organ failure in severe inflammatory conditions such as sepsis. Endothelial cells from different tissues show phenotypic variations which are often neglected in endothelial research. Sphingosine-1-phosphate (S1P) and AMP-dependent kinase (AMPK) have been shown to protect the endothelium and phosphorylation of AMPK by S1P was shown in several cell types. However, the role of the S1P-AMPK interrelationship for endothelial barrier stabilization has not been investigated. To assess the role of the S1P-AMPK signalling axis in this context, we established an in vitro model allowing real-time monitoring of endothelial barrier function in human microvascular endothelial cells (HMEC-1) and murine glomerular endothelial cells (GENCs) with the electric cell-substrate impedance sensing (ECIS™) system. Following the disruption of the cell barrier by co-administration of LPS, TNF-α, IL-1ß, IFN-γ, and IL-6, we demonstrated self-recovery of the disrupted barrier in HMEC-1, while the barrier remained compromised in GENCs. Under physiological conditions we observed a rapid phosphorylation of AMPK in HMEC-1 stimulated with S1P, but not in GENCs. Consistently, S1P enhanced the basal endothelial barrier in HMEC-1 exclusively. siRNA-mediated knockdown of AMPK in HMEC-1 led to a less pronounced barrier enhancement. Thus we present evidence for a functional role of AMPK in S1P-mediated barrier stabilization in HMEC-1 and we provide insight into cell-type specific differences of the S1P-AMPK-interrelationship, which might influence the development of interventional strategies targeting endothelial barrier dysfunction.


Assuntos
Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Lisofosfolipídeos/metabolismo , Proteínas Quinases/metabolismo , Esfingosina/análogos & derivados , Quinases Proteína-Quinases Ativadas por AMP , Animais , Capilares/citologia , Linhagem Celular , Células Cultivadas , Endotélio Vascular/metabolismo , Humanos , Interleucinas/genética , Interleucinas/metabolismo , Camundongos , Esfingosina/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
16.
Life Sci ; 203: 112-120, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29684444

RESUMO

AIMS: Studies on omega-3 fatty acids, including docosahexaenoic acid (DHA), reveal diverging results: Their intake is recommended in cardiovascular disease and major surgery, while evidence argues against use in septic patients. DHA mediates its blood-pressure-lowering effect through Slo1 channels that are expressed on cardiovascular and immune cells. We hypothesised that conflicting effects of immunonutrition could be explained by the influence of omega-3 fatty acids on systemic blood pressure or immune effector cells through Slo1. MAIN METHODS: The effect of DHA on blood pressure was analysed in septic wild-type (WT) mice. Septic WT and Slo1 knockout (KO) mice were compared regarding survival, clinical presentation, haematology, cytokine release and bacterial burden. Cytokine expression and release of bone marrow derived macrophages (BMDM) from WT and Slo1 KO mice was assessed in response to LPS. KEY FINDINGS: The significant blood-pressure-lowering effect of DHA in healthy animals was blunted in already hypotensive septic mice. Septic Slo1 KO mice displayed moderately lower bacterial burden in blood and lungs compared with WT, which did not translate into improved survival. Slo1 KO BMDM presented lower IL-6 levels in response to LPS, an effect that was abolished in the presence of DHA. More importantly, the strong inhibitory effect of DHA on IL-6 release was also observed in Slo1 KO BMDM. SIGNIFICANCE: The controversial effects of immunonutrition in sepsis are unlikely to be primarily explained by the influence of DHA on blood pressure or effects on immune response mediated through Slo1 channels.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/fisiologia , Pulmão/imunologia , Macrófagos/imunologia , Sepse/imunologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Feminino , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout , Sepse/metabolismo , Sepse/patologia
17.
J Hepatol ; 67(2): 272-281, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28412296

RESUMO

BACKGROUND & AIMS: Biliverdin and bilirubin were previously considered end products of heme catabolism; now, however, there is evidence for further degradation to diverse bioactive products. Z-BOX A and Z-BOX B arise upon oxidation with unknown implications for hepatocellular function and integrity. We studied the impact of Z-BOX A and B on hepatic functions and explored their alterations in health and cholestatic conditions. METHODS: Functional implications and mechanisms were investigated in rats, hepatocytic HepG2 and HepaRG cells, human immortalized hepatocytes, and isolated perfused livers. Z-BOX A and B were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in acute and acute-on-chronic liver failure and hereditary unconjugated hyperbilirubinemia. RESULTS: Z-BOX A and B are found in similar amounts in humans and rodents under physiological conditions. Serum concentrations increased ∼20-fold during cholestatic liver failure in humans (p<0.001) and in hereditary deficiency of bilirubin glucuronidation in rats (p<0.001). Pharmacokinetic studies revealed shorter serum half-life of Z-BOX A compared to its regio-isomer Z-BOX B (p=0.035). While both compounds were taken up by hepatocytes, Z-BOX A was enriched ∼100-fold and excreted in bile. Despite their reported vasoconstrictive properties in the brain vasculature, BOXes did not affect portal hemodynamics. Both Z-BOX A and B showed dose-dependent cytotoxicity, affected the glutathione redox state, and differentially modulated activity of Rev-erbα and Rev-erbß. Moreover, BOXes-triggered remodeling of the hepatocellular cytoskeleton. CONCLUSIONS: Our data provide evidence that higher-order heme degradation products, namely Z-BOX A and B, impair hepatocellular integrity and might mediate intra- and extrahepatic cytotoxic effects previously attributed to hyperbilirubinemia. LAY SUMMARY: Degradation of the blood pigment heme yields the bile pigment bilirubin and the oxidation products Z-BOX A and Z-BOX B. Serum concentrations of these bioactive molecules increase in jaundice and can impair liver function and integrity. Amounts of Z-BOX A and Z-BOX B that are observed during liver failure in humans have profound effects on hepatic function when added to cultured liver cells or infused into healthy rats.


Assuntos
Heme/metabolismo , Fígado/metabolismo , Insuficiência Hepática Crônica Agudizada/metabolismo , Animais , Bile/metabolismo , Bilirrubina/metabolismo , Biliverdina/metabolismo , Colestase/metabolismo , Glutationa/metabolismo , Hemodinâmica , Células Hep G2 , Humanos , Hiperbilirrubinemia/metabolismo , Técnicas In Vitro , Circulação Hepática , Masculino , Oxirredução , Pirróis/metabolismo , Ratos , Ratos Wistar
18.
Proc Natl Acad Sci U S A ; 111(52): 18685-90, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25512512

RESUMO

Sepsis is characterized by overlapping phases of excessive inflammation temporally aligned with an immunosuppressed state, defining a complex clinical scenario that explains the lack of successful therapeutic options. Here we tested whether the formyl-peptide receptor 2/3 (Fpr2/3)--ortholog to human FPR2/ALX (receptor for lipoxin A4)--exerted regulatory and organ-protective functions in experimental sepsis. Coecal ligature and puncture was performed to obtain nonlethal polymicrobial sepsis, with animals receiving antibiotics and analgesics. Clinical symptoms, temperature, and heart function were monitored up to 24 h. Peritoneal lavage and plasma samples were analyzed for proinflammatory and proresolving markers of inflammation and organ dysfunction. Compared with wild-type mice, Fpr2/3(-/-) animals exhibited exacerbation of disease severity, including hypothermia and cardiac dysfunction. This scenario was paralleled by higher levels of cytokines [CXCL1 (CXC receptor ligand 1), CCL2 (CC receptor ligand 2), and TNFα] as quantified in cell-free biological fluids. Reduced monocyte recruitment in peritoneal lavages of Fpr2/3(-/-) animals was reflected by a higher granulocyte/monocyte ratio. Monitoring Fpr2/3(-/-) gene promoter activity with a GFP proxy marker revealed an over threefold increase in granulocyte and monocyte signals at 24 h post-coecal ligature and puncture, a response mediated by TNFα. Treatment with a receptor peptido-agonist conferred protection against myocardial dysfunction in wild-type, but not Fpr2/3(-/-), animals. Therefore, coordinated physio-pharmacological analyses indicate nonredundant modulatory functions for Fpr2/3 in experimental sepsis, opening new opportunities to manipulate the host response for therapeutic development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Granulócitos/metabolismo , Monócitos/metabolismo , Receptores de Formil Peptídeo/metabolismo , Sepse/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Modelos Animais de Doenças , Granulócitos/patologia , Humanos , Camundongos , Camundongos Knockout , Monócitos/patologia , Peritônio/metabolismo , Peritônio/patologia , Receptores de Formil Peptídeo/genética , Sepse/genética , Sepse/patologia , Fatores de Tempo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
20.
PLoS One ; 9(6): e100631, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24945834

RESUMO

Development of cardiac dysfunction is associated with increased morbidity and mortality in patients with sepsis. Increasing evidence shows that gender determines the degree of inflammatory response of the host and that females tolerate sepsis better than males. It is unknown whether gender affects the cardiac dysfunction in animals or patients with sepsis. To investigate this, male or female C57BL/6 mice were subjected to either lipopolysaccharide (LPS)/peptidoglycan (PepG) co-administration or cecal ligation and puncture (CLP). At 18 hours after LPS/PepG injection or 24 hours after CLP, cardiac function was evaluated by echocardiography. The septic insult caused a significant cardiac dysfunction in both genders. However, the cardiac dysfunction was significantly less pronounced in females in comparison with males subjected to LPS (3 mg/kg)/PepG (0.1 mg/kg) or CLP. Compared with males injected with LPS (3 mg/kg)/PepG (0.1 mg/kg), western blotting analysis of the myocardium from females injected with LPS/PepG revealed i) profound increases in phosphorylation of Akt and eNOS; ii) significant decreases in phosphorylation of IκBα, nuclear translocation of the NF-κB subunit p65, decreased expression of iNOS and decreased synthesis of TNF-α and IL-6 in the heart. However, the gender dimorphism of the cardiac dysfunction secondary to LPS/PepG was not observed when higher doses of LPS (9 mg/kg)/PepG (1 mg/kg) were used. In conclusion, the cardiac dysfunction caused by sepsis was less pronounced in female than in male mice. The protection of female hearts against the dysfunction associated with sepsis is (at least in part) attributable to cardiac activation of the Akt/eNOS survival pathway, decreased activation of NF-κB, and decreased expression of iNOS, TNF-α and IL-6. It should be noted that the observed gender dimorphism of the cardiac dysfunction in sepsis was not seen when a very severe stimulus (high dose of LPS/PepG co-administration) was used to cause cardiac dysfunction.


Assuntos
Insuficiência Cardíaca/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sepse/metabolismo , Fatores Etários , Animais , Feminino , Regulação da Expressão Gênica , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/genética , Humanos , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibidor de NF-kappaB alfa , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Peptidoglicano , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Sepse/induzido quimicamente , Sepse/complicações , Sepse/genética , Fatores Sexuais , Transdução de Sinais , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA