Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 23(11): 2816-33, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24603074

RESUMO

α-Synuclein plays a central causative role in Parkinson's disease (PD). Increased expression of the P-type ATPase ion pump PARK9/ATP13A2 suppresses α-Synuclein toxicity in primary neurons. Our data indicate that ATP13A2 encodes a zinc pump; neurospheres from a compound heterozygous ATP13A2(-/-) patient and ATP13A2 knockdown cells are sensitive to zinc, whereas ATP13A2 over-expression in primary neurons confers zinc resistance. Reduced ATP13A2 expression significantly decreased vesicular zinc levels, indicating ATP13A2 facilitates transport of zinc into membrane-bound compartments or vesicles. Endogenous ATP13A2 localized to multi-vesicular bodies (MVBs), a late endosomal compartment located at the convergence point of the endosomal and autophagic pathways. Dysfunction in MVBs can cause a range of detrimental effects including lysosomal dysfunction and impaired delivery of endocytosed proteins/autophagy cargo to the lysosome, both of which have been observed in cells with reduced ATP13A2 function. MVBs also serve as the source of intra-luminal nanovesicles released extracellularly as exosomes that can contain a range of cargoes including α-Synuclein. Elevated ATP13A2 expression reduced intracellular α-Synuclein levels and increased α-Synuclein externalization in exosomes >3-fold whereas ATP13A2 knockdown decreased α-Synuclein externalization. An increased export of exosome-associated α-Synuclein may explain why surviving neurons of the substantia nigra pars compacta in sporadic PD patients were observed to over-express ATP13A2. We propose ATP13A2's modulation of zinc levels in MVBs can regulate the biogenesis of exosomes capable of containing α-Synuclein. Our data indicate that ATP13A2 is the first PD-associated gene involved in exosome biogenesis and indicates a potential neuroprotective role of exosomes in PD.


Assuntos
Exossomos/metabolismo , Doença de Parkinson/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Zinco/metabolismo , alfa-Sinucleína/metabolismo , Autofagia , Exossomos/genética , Homeostase , Humanos , Neurônios/enzimologia , Neurônios/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , ATPases Translocadoras de Prótons/genética , alfa-Sinucleína/genética
2.
J Biol Chem ; 286(26): 23407-18, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21550974

RESUMO

Neuron polarization is essential for the formation of one axon and multiple dendrites, establishing the neuronal circuitry. Phosphoinositide 3-kinase (PI3K) signaling promotes axon selection and elongation. Here we report in hippocampal neurons siRNA knockdown of the proline-rich inositol polyphosphate 5-phosphatase (PIPP), which degrades PI3K-generated PtdIns(3,4,5)P(3), results in multiple hyperelongated axons consistent with a polarization defect. We identify collapsin response mediator protein 2 (CRMP2), which regulates axon selection by promoting WAVE1 delivery via Kinesin-1 motors to the axon growth cone, as a PIPP-interacting protein by Y2H screening, direct binding studies, and coimmunoprecipitation of an endogenous PIPP, CRMP2, and Kinesin-1 complex from brain lysates. The C-terminal growth cone-targeting domain of PIPP facilitates its interaction with CRMP2. PIPP growth cone localization is CRMP2-dependent. PIPP knockdown in PC12 cells promotes neurite elongation, WAVE1 and Kinesin-1 growth cone localization, whereas knockdown of CRMP2 exhibits the opposite phenotype, with shorter neurites and decreased WAVE1/Kinesin-1 at the growth cone. In contrast, CRMP2 overexpression promotes neurite elongation, a phenotype rescued by full-length PIPP, or expression of the CRMP2-binding PIPP domain. Therefore this study identifies PIPP and CRMP2 exert opposing roles in promoting axon selection and neurite elongation and the complex between these proteins serves to regulate the localization of effectors that promote neurite extension.


Assuntos
Cones de Crescimento/metabolismo , Hipocampo/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuritos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Hipocampo/citologia , Inositol Polifosfato 5-Fosfatases , Peptídeos e Proteínas de Sinalização Intercelular , Cinesinas/genética , Cinesinas/metabolismo , Masculino , Complexos Multiproteicos/genética , Proteínas do Tecido Nervoso/genética , Células PC12 , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/genética , Ratos , Ratos Sprague-Dawley , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo
3.
J Biol Chem ; 283(26): 18227-37, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18460467

RESUMO

Collapsin response mediator protein 2 (CRMP2) binds to microtubules and regulates axon outgrowth in neurons. This action is regulated by sequential phosphorylation by the kinases cyclin-dependent kinase 5 (Cdk5) and glycogen synthase kinase 3 (GSK3) at sites that are hyperphosphorylated in Alzheimer disease. The increased phosphorylation in Alzheimer disease could be due to increases in Cdk5 and/or GSK3 activity or, alternatively, through decreased activity of a CRMP phosphatase. Here we establish that dephosphorylation of CRMP2 at the residues targeted by GSK3 (Ser-518/Thr-514/Thr-509) is carried out by a protein phosphatase 1 family member in vitro, in neuroblastoma cells, and primary cortical neurons. Inhibition of GSK3 activity using insulin-like growth factor-1 or the highly selective inhibitor CT99021 causes rapid dephosphorylation of CRMP2 at these sites. In contrast, pharmacological inhibition of Cdk5 using purvalanol results in only a gradual and incomplete dephosphorylation of CRMP2 at the site targeted by Cdk5 (Ser-522), suggesting a distinct phosphatase targets this residue. A direct comparison of dephosphorylation at the Cdk5 versus GSK3 sites in vitro shows that the Cdk5 site is comparatively resistant to phosphatase treatment. The presence of the peptidyl-prolyl isomerase enzyme, Pin1, does not affect dephosphorylation of Ser-522 in vitro, in cells, or in Pin1 transgenic mice. Instead, the relatively high resistance of this site to phosphatase treatment is at least in part due to the presence of basic residues located nearby. Similar sequences in Tau are also highly resistant to phosphatase treatment. We propose that relative resistance to phosphatases might be a common feature of Cdk5 substrates and could contribute to the hyperphosphorylation of CRMP2 and Tau observed in Alzheimer disease.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Resistência a Medicamentos , Proteínas tau/química , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/metabolismo , Fosforilação , Purinas/farmacologia , Ratos
4.
J Biol Chem ; 281(24): 16591-8, 2006 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-16611631

RESUMO

Collapsin response mediator proteins (CRMPs) are a family of neuron-enriched proteins that regulate neurite outgrowth and growth cone dynamics. Here, we show that Cdk5 phosphorylates CRMP1, CRMP2, and CRMP4, priming for subsequent phosphorylation by GSK3 in vitro. In contrast, DYRK2 phosphorylates and primes CRMP4 only. The Cdk5 and DYRK2 inhibitor purvalanol decreases the phosphorylation of CRMP proteins in neurons, whereas CRMP1 and CRMP2, but not CRMP4, phosphorylation is decreased in Cdk5(-/-) cortices. Stimulation of neuroblastoma cells with IGF1 or TPA decreases GSK3 activity concomitantly with CRMP2 and CRMP4 phosphorylation. Conversely, increased GSK3 activity is not sufficient to increase CRMP phosphorylation. However, the growth cone collapse-inducing protein Sema3A increases Cdk5 activity and promotes phosphorylation of CRMP2 (but not CRMP4). Therefore, inhibition of GSK3 alters phosphorylation of all CRMP isoforms; however, individual isoforms can be differentially regulated by their respective priming kinase. This is the first GSK3 substrate found to be regulated in this manner and may explain the hyperphosphorylation of CRMP2 observed in Alzheimer's disease.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Semaforina-3A/fisiologia , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Quinase 5 Dependente de Ciclina/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Dados de Sequência Molecular , Proteínas Musculares , Proteínas do Tecido Nervoso/metabolismo , Proteínas/metabolismo , Ratos , Semaforina-3A/metabolismo
5.
J Biol Chem ; 279(48): 50176-80, 2004 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-15466863

RESUMO

Elevated glycogen synthase kinase-3 (GSK-3) activity is associated with Alzheimer disease. We have found that collapsin response mediator proteins (CRMP) 2 and 4 are physiological substrates of GSK-3. The amino acids targeted by GSK-3 comprise a hyperphosphorylated epitope first identified in plaques isolated from Alzheimer brain. Expression of wild type CRMP2 in primary hippocampal neurons or SH-SY5Y neuroblastoma cells promotes axon elongation. However, a GSK-3-insensitive CRMP2 mutant has dramatically reduced ability to promote axon elongation, a similar effect to pharmacological inhibition of GSK-3. Hence, we propose that phosphorylation of CRMP proteins by GSK-3 regulates axon elongation. This work provides a direct connection between hyperphosphorylation of these residues and elevated GSK-3 activity, both of which are observed in Alzheimer brain.


Assuntos
Doença de Alzheimer/imunologia , Axônios/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Semaforina-3A/metabolismo , Animais , Epitopos/imunologia , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas do Tecido Nervoso/imunologia , Fosforilação , Ratos , Semaforina-3A/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA