Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 65(11): e0098521, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34370589

RESUMO

The widespread emergence of antibiotic resistance, including multidrug resistance in Gram-negative (G-) bacterial pathogens, poses a critical challenge to the current antimicrobial armamentarium. Antibody-drug conjugates (ADCs), primarily used in anticancer therapy, offer a promising treatment alternative due to their ability to deliver a therapeutic molecule while simultaneously activating the host immune response. The Cloudbreak platform is being used to develop ADCs to treat infectious diseases, composed of a therapeutic targeting moiety (TM) attached via a noncleavable linker to an effector moiety (EM) to treat infectious diseases. In this proof-of-concept study, 21 novel dimeric peptidic molecules (TMs) were evaluated for activity against a screening panel of G- pathogens. The activities of the TMs were not impacted by existing drug resistance. Potent TMs were conjugated to the Fc fragment of human IgG1 (EM), resulting in 4 novel ADCs. These ADCs were evaluated for immunoprophylactic efficacy in a neutropenic mouse model of deep thigh infection. In colistin-sensitive infections, 3 of the 4 ADCs offered protection similar to that of therapeutically dosed colistin, while CTC-171 offered enhanced protection. The efficacy of these ADCs was unchanged in colistin-resistant infections. Together, these results indicate that the ADCs used here are capable of potent binding to G- pathogens regardless of lipopolysaccharide (LPS) modifications that otherwise lead to antibiotic resistance and support further exploration of ADCs in the treatment of infections caused by drug-resistant G- bacteria.


Assuntos
Colistina , Infecções por Bactérias Gram-Negativas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Modelos Animais de Doenças , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Lipopolissacarídeos , Camundongos
2.
OMICS ; 18(7): 402-14, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24785449

RESUMO

The Human Microbiome Project (HMP) is a global initiative undertaken to identify and characterize the collection of human-associated microorganisms at multiple anatomic sites (skin, mouth, nose, colon, vagina), and to determine how intra-individual and inter-individual alterations in the microbiome influence human health, immunity, and different disease states. In this review article, we summarize the key findings and applications of the HMP that may impact pharmacology and personalized therapeutics. We propose a microbiome cloud model, reflecting the temporal and spatial uncertainty of defining an individual's microbiome composition, with examples of how intra-individual variations (such as age and mode of delivery) shape the microbiome structure. Additionally, we discuss how this microbiome cloud concept explains the difficulty to define a core human microbiome and to classify individuals according to their biome types. Detailed examples are presented on microbiome changes related to colorectal cancer, antibiotic administration, and pharmacomicrobiomics, or drug-microbiome interactions, highlighting how an improved understanding of the human microbiome, and alterations thereof, may lead to the development of novel therapeutic agents, the modification of antibiotic policies and implementation, and improved health outcomes. Finally, the prospects of a collaborative computational microbiome research initiative in Africa are discussed.


Assuntos
Metagenoma , Microbiota , Farmacogenética , Medicina de Precisão , Animais , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Biodiversidade , Genômica , Humanos , Microbiologia/tendências
3.
J Biol Chem ; 289(6): 3539-46, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24356958

RESUMO

Group A Streptococcus (GAS) is a leading human pathogen producing a diverse array of infections from simple pharyngitis ("strep throat") to invasive conditions, including necrotizing fasciitis and toxic shock syndrome. The surface-anchored GAS M1 protein is a classical virulence factor that promotes phagocyte resistance and exaggerated inflammation by binding host fibrinogen (Fg) to form supramolecular networks. In this study, we used a virulent WT M1T1 GAS strain and its isogenic M1-deficient mutant to examine the role of M1-Fg binding in a proximal step in GAS infection-interaction with the pharyngeal epithelium. Expression of the M1 protein reduced GAS adherence to human pharyngeal keratinocytes by 2-fold, and this difference was increased to 4-fold in the presence of Fg. In stationary phase, surface M1 protein cleavage by the GAS cysteine protease SpeB eliminated Fg binding and relieved its inhibitory effect on GAS pharyngeal cell adherence. In a mouse model of GAS colonization of nasal-associated lymphoid tissue, M1 protein expression was associated with an average 6-fold decreased GAS recovery in isogenic strain competition assays. Thus, GAS M1 protein-Fg binding reduces GAS pharyngeal cell adherence and colonization in a fashion that is counterbalanced by SpeB. Inactivation of SpeB during the shift to invasive GAS disease allows M1-Fg binding, increasing pathogen phagocyte resistance and proinflammatory activities.


Assuntos
Antígenos de Bactérias/metabolismo , Aderência Bacteriana , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/metabolismo , Queratinócitos/metabolismo , Faringe/metabolismo , Infecções Estreptocócicas/metabolismo , Streptococcus pyogenes/metabolismo , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Linhagem Celular , Modelos Animais de Doenças , Exotoxinas/genética , Exotoxinas/imunologia , Exotoxinas/metabolismo , Fibrinogênio/genética , Fibrinogênio/imunologia , Fibrinogênio/metabolismo , Humanos , Queratinócitos/microbiologia , Queratinócitos/patologia , Camundongos , Faringe/microbiologia , Faringe/patologia , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/genética , Streptococcus pyogenes/imunologia , Streptococcus pyogenes/patogenicidade
4.
Virulence ; 3(7): 566-75, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23076332

RESUMO

Streptococcus pyogenes (group A streptococcus, GAS) is a human bacterial pathogen of global significance, causing severe invasive diseases associated with serious morbidity and mortality. To survive within the host and establish an infection, GAS requires essential nutrients, including iron. The streptococcal hemoprotein receptor (Shr) is a surface-localized GAS protein that binds heme-containing proteins and extracellular matrix components. In this study, we employ targeted allelic exchange mutagenesis to investigate the role of Shr in the pathogenesis of the globally disseminated serotype M1T1 GAS. The shr mutant exhibited a growth defect in iron-restricted medium supplemented with ferric chloride, but no significant differences were observed in neutrophil survival, antimicrobial peptide resistance, cell surface charge, fibronectin-binding or adherence to human epithelial cells and keratinocytes, compared with wild-type. However, the shr mutant displayed a reduction in human blood proliferation, laminin-binding capacity and was attenuated for virulence in in vivo models of skin and systemic infection. We conclude that Shr augments GAS adherence to laminin, an important extracellular matrix attachment component. Furthermore, Shr-mediated iron uptake contributes to GAS growth in human blood, and is required for full virulence of serotype M1T1 GAS in mouse models of invasive disease.


Assuntos
Hemeproteínas/metabolismo , Ferro/metabolismo , Streptococcus pyogenes/metabolismo , Streptococcus pyogenes/patogenicidade , Fatores de Virulência/metabolismo , Animais , Bacteriemia/microbiologia , Bacteriemia/patologia , Células Cultivadas , Meios de Cultura/química , Modelos Animais de Doenças , Células Epiteliais/microbiologia , Feminino , Técnicas de Inativação de Genes , Marcação de Genes , Humanos , Queratinócitos/microbiologia , Camundongos , Viabilidade Microbiana , Neutrófilos/microbiologia , Dermatopatias Bacterianas/microbiologia , Dermatopatias Bacterianas/patologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/patologia , Streptococcus pyogenes/crescimento & desenvolvimento , Virulência
5.
FASEB J ; 26(11): 4675-84, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22878963

RESUMO

The past 50 years has witnessed the emergence of new viral and bacterial pathogens with global effect on human health. The hyperinvasive group A Streptococcus (GAS) M1T1 clone, first detected in the mid-1980s in the United States, has since disseminated worldwide and remains a major cause of severe invasive human infections. Although much is understood regarding the capacity of this pathogen to cause disease, much less is known of the precise evolutionary events selecting for its emergence. We used high-throughput technologies to sequence a World Health Organization strain collection of serotype M1 GAS and reconstructed its phylogeny based on the analysis of core genome single-nucleotide polymorphisms. We demonstrate that acquisition of a 36-kb genome segment from serotype M12 GAS and the bacteriophage-encoded DNase Sda1 led to increased virulence of the M1T1 precursor and occurred relatively early in the molecular evolutionary history of this strain. The more recent acquisition of the phage-encoded superantigen SpeA is likely to have provided selection advantage for the global dissemination of the M1T1 clone. This study provides an exemplar for the evolution and emergence of virulent clones from microbial populations existing commensally or causing only superficial infection.


Assuntos
Evolução Biológica , Pandemias , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Células Epiteliais/microbiologia , Exotoxinas/genética , Exotoxinas/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Genoma Bacteriano , Saúde Global , Interações Hospedeiro-Patógeno , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Neutrófilos/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Fagocitose , Filogenia , Streptococcus pyogenes/classificação , Streptococcus pyogenes/genética , Streptococcus pyogenes/patogenicidade , Transcriptoma , Virulência
6.
Proteomics ; 7(24): 4488-98, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18072207

RESUMO

The serine protease high-temperature requirement A (HtrA) (DegP) of the human pathogen Streptococcus pyogenes (group A Streptococcus; GAS) is localized to the ExPortal secretory microdomain and is reportedly essential for the maturation of cysteine protease streptococcal pyrogenic exotoxin B (SpeB). Here, we utilize HSC5 (M5 serotype) and the in-frame isogenic mutant HSC5DeltahtrA to determine whether HtrA contributes to the maturation of other GAS virulence determinants. Mutanolysin cell wall extracts and secreted proteins were arrayed by 2-DE and identified by MALDI-TOF PMF analysis. HSC5DeltahtrA had elevated levels of cell wall-associated M protein, whilst the supernatant had higher concentrations of M protein fragments and a reduced amount of mature SpeB protease, compared to wild-type (WT). Western blot analysis and protease assays revealed a delay in the maturation of SpeB in the HSC5DeltahtrA supernatant. HtrA was unable to directly process SpeB zymogen (proSpeB) to the active form in vitro. We therefore conclude that HtrA plays an indirect role in the maturation of cysteine protease SpeB.


Assuntos
Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Streptococcus pyogenes/enzimologia , Proteínas de Bactérias/química , Parede Celular/química , Meios de Cultura , Eletroforese em Gel Bidimensional , Ativação Enzimática , Precursores Enzimáticos/metabolismo , Cinética , Proteoma , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fatores de Tempo
7.
Nat Med ; 13(8): 981-5, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17632528

RESUMO

Most invasive bacterial infections are caused by species that more commonly colonize the human host with minimal symptoms. Although phenotypic or genetic correlates underlying a bacterium's shift to enhanced virulence have been studied, the in vivo selection pressures governing such shifts are poorly understood. The globally disseminated M1T1 clone of group A Streptococcus (GAS) is linked with the rare but life-threatening syndromes of necrotizing fasciitis and toxic shock syndrome. Mutations in the GAS control of virulence regulatory sensor kinase (covRS) operon are associated with severe invasive disease, abolishing expression of a broad-spectrum cysteine protease (SpeB) and allowing the recruitment and activation of host plasminogen on the bacterial surface. Here we describe how bacteriophage-encoded GAS DNase (Sda1), which facilitates the pathogen's escape from neutrophil extracellular traps, serves as a selective force for covRS mutation. The results provide a paradigm whereby natural selection exerted by the innate immune system generates hypervirulent bacterial variants with increased risk of systemic dissemination.


Assuntos
Desoxirribonuclease I/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/enzimologia , Streptococcus pyogenes/patogenicidade , Animais , Sobrevivência Celular , Desoxirribonuclease I/genética , Humanos , Imunidade Inata , Camundongos , Neutrófilos/citologia , Neutrófilos/microbiologia , Fenótipo , Seleção Genética , Infecções Estreptocócicas/patologia , Streptococcus pyogenes/genética , Virulência
8.
FASEB J ; 20(10): 1745-7, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16790522

RESUMO

The globally disseminated Streptococcus pyogenes M1T1 clone causes a number of highly invasive human diseases. The transition from local to systemic infection occurs by an unknown mechanism; however invasive M1T1 clinical isolates are known to express significantly less cysteine protease SpeB than M1T1 isolates from local infections. Here, we show that in comparison to the M1T1 strain 5448, the isogenic mutant delta speB accumulated 75-fold more human plasmin activity on the bacterial surface following incubation in human plasma. Human plasminogen was an absolute requirement for M1T1 strain 5448 virulence following subcutaneous (s.c.) infection of humanized plasminogen transgenic mice. S. pyogenes M1T1 isolates from the blood of infected humanized plasminogen transgenic mice expressed reduced levels of SpeB in comparison with the parental 5448 used as inoculum. We propose that the human plasminogen system plays a critical role in group A streptococcal M1T1 systemic disease initiation. SpeB is required for S. pyogenes M1T1 survival at the site of local infection, however, SpeB also disrupts the interaction of S. pyogenes M1T1 with the human plasminogen activation system. Loss of SpeB activity in a subpopulation of S. pyogenes M1T1 at the site of infection results in accumulation of surface plasmin activity thus triggering systemic spread.


Assuntos
Plasminogênio/fisiologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/patogenicidade , Animais , Proteínas de Bactérias/genética , Exotoxinas/genética , Fibrinolisina/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Infecções Estreptocócicas/etiologia , Streptococcus pyogenes/química , Virulência
9.
FEMS Microbiol Lett ; 221(1): 7-16, 2003 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-12694904

RESUMO

We have constructed an aromatic amino acid auxotrophic mutant of Bordetella bronchiseptica, harbouring mutations in aroA and trpE to investigate the use of such a strain as a live-attenuated vaccine. B. bronchiseptica aroA trpE was unable to grow in minimal medium without aromatic supplementation. Compared to the parental wild-type strain, the mutant displayed significantly reduced abilities to invade and survive within the mouse macrophage-like cell line J774A.1 in vitro and in the murine respiratory tract following experimental intranasal infection. Mice vaccinated with B. bronchiseptica aroA trpE displayed significant dose-dependent increases in B. bronchiseptica-specific antibody responses, and exhibited increases in the number of B. bronchiseptica-reactive spleen cells in lymphoproliferation assays. Immunised animals were protected against lung colonisation after challenge with the wild-type parental strain. With such a broad host range displayed by B. bronchiseptica, the attenuated strain constructed in this study may not only be used for the prevention of B. bronchiseptica-associated disease, but also for the potential delivery of heterologous antigen.


Assuntos
Aminoácidos Aromáticos/metabolismo , Vacinas Bacterianas/imunologia , Infecções por Bordetella/prevenção & controle , Bordetella bronchiseptica/imunologia , Mutação , Vacinas Atenuadas/imunologia , 3-Fosfoshikimato 1-Carboxiviniltransferase , Alquil e Aril Transferases/química , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/imunologia , Animais , Antranilato Sintase/química , Antranilato Sintase/genética , Antranilato Sintase/imunologia , Anticorpos Antibacterianos/sangue , Vacinas Bacterianas/administração & dosagem , Infecções por Bordetella/microbiologia , Bordetella bronchiseptica/genética , Bordetella bronchiseptica/crescimento & desenvolvimento , Bordetella bronchiseptica/patogenicidade , Linhagem Celular , Modelos Animais de Doenças , Feminino , Ativação Linfocitária , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Óperon , Análise de Sequência de DNA , Vacinação , Vacinas Atenuadas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA