Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Breast Cancer Res ; 26(1): 96, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849928

RESUMO

BACKGROUND: Metabolic plasticity mediates breast cancer survival, growth, and immune evasion during metastasis. However, how tumor cell metabolism is influenced by and feeds back to regulate breast cancer progression are not fully understood. We identify hypoxia-mediated suppression of pyruvate carboxylase (PC), and subsequent induction of lactate production, as a metabolic regulator of immunosuppression. METHODS: We used qPCR, immunoblot, and reporter assays to characterize repression of PC in hypoxic primary tumors. Steady state metabolomics were used to identify changes in metabolite pools upon PC depletion. In vivo tumor growth and metastasis assays were used to evaluate the impact of PC manipulation and pharmacologic inhibition of lactate transporters. Immunohistochemistry, flow cytometry, and global gene expression analyzes of tumor tissue were employed to characterize the impact of PC depletion on tumor immunity. RESULTS: PC is essential for metastatic colonization of the lungs. In contrast, depletion of PC in tumor cells promotes primary tumor growth. This effect was only observed in immune competent animals, supporting the hypothesis that repression of PC can suppress anti-tumor immunity. Exploring key differences between the pulmonary and mammary environments, we demonstrate that hypoxia potently downregulated PC. In the absence of PC, tumor cells produce more lactate and undergo less oxidative phosphorylation. Inhibition of lactate metabolism was sufficient to restore T cell populations to PC-depleted mammary tumors. CONCLUSIONS: We present a dimorphic role for PC in primary mammary tumors vs. pulmonary metastases. These findings highlight a key contextual role for PC-directed lactate production as a metabolic nexus connecting hypoxia and antitumor immunity.


Assuntos
Neoplasias da Mama , Piruvato Carboxilase , Piruvato Carboxilase/metabolismo , Piruvato Carboxilase/genética , Animais , Feminino , Camundongos , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Ácido Láctico/metabolismo , Regulação Neoplásica da Expressão Gênica , Hipóxia Celular , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Tolerância Imunológica
2.
Cells ; 13(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38786030

RESUMO

Triple-negative breast cancer (TNBC) lacks targeted therapies, leaving cytotoxic chemotherapy as the current standard treatment. However, chemotherapy resistance remains a major clinical challenge. Increased insulin-like growth factor 1 signaling can potently blunt chemotherapy response, and lysosomal processes including the nutrient scavenging pathway autophagy can enable cancer cells to evade chemotherapy-mediated cell death. Thus, we tested whether inhibition of insulin receptor/insulin-like growth factor 1 receptor with the drug BMS-754807 and/or lysosomal disruption with hydroxychloroquine (HCQ) could sensitize TNBC cells to the chemotherapy drug carboplatin. Using in vitro studies in multiple TNBC cell lines, in concert with in vivo studies employing a murine syngeneic orthotopic transplant model of TNBC, we show that BMS-754807 and HCQ each sensitized TNBC cells and tumors to carboplatin and reveal that exogenous metabolic modulators may work synergistically with carboplatin as indicated by Bliss analysis. Additionally, we demonstrate the lack of overt in vivo toxicity with our combination regimens and, therefore, propose that metabolic targeting of TNBC may be a safe and effective strategy to increase sensitivity to chemotherapy. Thus, we conclude that the use of exogenous metabolic modulators, such as BMS-754807 or HCQ, in combination with chemotherapy warrants additional study as a strategy to improve therapeutic responses in women with TNBC.


Assuntos
Carboplatina , Neoplasias de Mama Triplo Negativas , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Humanos , Feminino , Linhagem Celular Tumoral , Camundongos , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Sinergismo Farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Autofagia/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos
3.
Stem Cell Res Ther ; 15(1): 119, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659070

RESUMO

BACKGROUND: Adipose stromal cells (ASC) are a form of mesenchymal stromal cells that elicit effects primarily via secreted factors, which may have advantages for the treatment of injury or disease. Several previous studies have demonstrated a protective role for MSC/ASC on mitigating acute kidney injury but whether ASC derived factors could hasten recovery from established injury has not been evaluated. METHODS: We generated a concentrated secretome (CS) of human ASC under well-defined conditions and evaluated its ability to improve the recovery of renal function in a preclinical model of acute kidney injury (AKI) in rats. 24 h following bilateral ischemia/reperfusion (I/R), rats were randomized following determination of plasma creatinine into groups receiving vehicle -control or ASC-CS treatment by subcutaneous injection (2 mg protein/kg) and monitored for evaluation of renal function, structure and inflammation. RESULTS: Renal function, assessed by plasma creatinine levels, recovered faster in ASC-CS treated rats vs vehicle. The most prominent difference between the ASC-CS treated vs vehicle was observed in rats with the most severe degree of initial injury (Pcr > 3.0 mg/dl 24 h post I/R), whereas rats with less severe injury (Pcr < 2.9 mg/dl) recovered quickly regardless of treatment. The quicker recovery of ASC-treated rats with severe injury was associated with less tissue damage, inflammation, and lower plasma angiopoietin 2. In vitro, ASC-CS attenuated the activation of the Th17 phenotype in lymphocytes isolated from injured kidneys. CONCLUSIONS: Taken together, these data suggest that ASC-CS represents a potent therapeutic option to improve established AKI.


Assuntos
Injúria Renal Aguda , Inflamação , Injúria Renal Aguda/terapia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Ratos , Humanos , Inflamação/patologia , Inflamação/metabolismo , Masculino , Secretoma/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Ratos Sprague-Dawley , Injeções Subcutâneas , Rim/metabolismo , Rim/patologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/terapia , Células Estromais/metabolismo
4.
Gynecol Oncol ; 186: 126-136, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38669767

RESUMO

OBJECTIVE: Overweight/obesity is the strongest risk factor for endometrial cancer (EC), and weight management can reduce that risk and improve survival. We aimed to establish the differential benefits of intermittent energy restriction (IER) and low-fat diet (LFD), alone and in combination with paclitaxel, to reverse the procancer effects of high-fat diet (HFD)-induced obesity in a mouse model of EC. METHODS: Lkb1fl/flp53fl/fl mice were fed HFD or LFD to generate obese and lean phenotypes, respectively. Obese mice were maintained on a HFD or switched to a LFD (HFD-LFD) or IER (HFD-IER). Ten weeks after induction of endometrial cancer, mice in each group received paclitaxel or placebo for 4 weeks. Body and tumor weights; tumoral transcriptomic, metabolomic and oxylipin profiles; and serum metabolic hormones and chemocytokines were assessed. RESULTS: HFD-IER and HFD-LFD, relative to HFD, reduced body weight; reversed obesity-induced alterations in serum insulin, leptin and inflammatory factors; and decreased tumor incidence and mass, often to levels emulating those associated with continuous LFD. Concurrent paclitaxel, versus placebo, enhanced tumor suppression in each group, with greatest benefit in HFD-IER. The diets produced distinct tumoral gene expression and metabolic profiles, with HFD-IER associated with a more favorable (antitumor) metabolic and inflammatory environment. CONCLUSION: In Lkb1fl/flp53fl/fl mice, IER is generally more effective than LFD in promoting weight loss, inhibiting obesity-related endometrial tumor growth (particularly in combination with paclitaxel), and reversing detrimental obesity-related metabolic effects. These findings lay the foundation for further investigations of IER as an EC prevention and treatment strategies in overweight/obesity women.

5.
Cell Metab ; 36(5): 969-983.e10, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38490211

RESUMO

The solid tumor microenvironment (TME) imprints a compromised metabolic state in tumor-infiltrating T cells (TILs), hallmarked by the inability to maintain effective energy synthesis for antitumor function and survival. T cells in the TME must catabolize lipids via mitochondrial fatty acid oxidation (FAO) to supply energy in nutrient stress, and it is established that T cells enriched in FAO are adept at cancer control. However, endogenous TILs and unmodified cellular therapy products fail to sustain bioenergetics in tumors. We reveal that the solid TME imposes perpetual acetyl-coenzyme A (CoA) carboxylase (ACC) activity, invoking lipid biogenesis and storage in TILs that opposes FAO. Using metabolic, lipidomic, and confocal imaging strategies, we find that restricting ACC rewires T cell metabolism, enabling energy maintenance in TME stress. Limiting ACC activity potentiates a gene and phenotypic program indicative of T cell longevity, engendering T cells with increased survival and polyfunctionality, which sustains cancer control.


Assuntos
Acetil-CoA Carboxilase , Linfócitos T CD8-Positivos , Metabolismo dos Lipídeos , Microambiente Tumoral , Acetil-CoA Carboxilase/metabolismo , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Humanos , Ácidos Graxos/metabolismo , Feminino , Linhagem Celular Tumoral , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Mitocôndrias/metabolismo
6.
bioRxiv ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38370796

RESUMO

Objective: Overweight/obesity is the strongest risk factor for endometrial cancer (EC), and weight management can reduce that risk and improve survival. We aimed to establish the differential abilities of intermittent energy restriction (IER) and low-fat diet (LFD), alone and in combination with paclitaxel, to reverse the procancer effects of high-fat diet (HFD)-induced obesity in a mouse model of EC. Methods: Lkb1 fl/fl p53 fl/fl mice were fed high-fat diet (HFD) or LFD to generate obese and lean phenotypes, respectively. Obese mice were maintained on HFD or switched to LFD (HFD-LFD) or IER (HFD-IER). Ten weeks after induction of endometrial tumor, mice in each group received paclitaxel or placebo for 4 weeks. Body and tumor weights; tumoral transcriptomic, metabolomic and oxylipin profiles; and serum metabolic hormones and chemocytokines were assessed. Results: HFD-IER and HFD-LFD, relative to HFD, reduced body weight; reversed obesity-induced alterations in serum insulin, leptin and inflammatory factors; and decreased tumor incidence and mass, often to levels emulating those associated with continuous LFD. Concurrent paclitaxel, versus placebo, enhanced tumor suppression in each group, with greatest benefit in HFD-IER. The diets produced distinct tumoral gene expression and metabolic profiles, with HFD-IER associated with a more favorable (antitumor) metabolic and inflammatory environment. Conclusion: In Lkb1 fl/fl p53 fl/fl mice, IER is generally more effective than LFD in promoting weight loss, inhibiting obesity-related endometrial tumor growth (particularly in combination with paclitaxel), and reversing detrimental obesity-related metabolic effects. These findings lay the foundation for further investigations of IER as a EC prevention strategy in women with overweight/obesity.

7.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38328151

RESUMO

We report for the first time an anticancer benefit of tirzepatide-a dual glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide receptor agonist-in a model of obesity and breast cancer in female mice. Long-term tirzepatide treatment induced weight loss, mitigated obesity-driven changes in circulating metabolic hormone levels, and suppressed orthotopic E0771 mammary tumor growth. Relative to tirzepatide, chronic calorie restriction, an established anticancer intervention in preclinical models, promoted even greater weight loss, systemic hormonal regulation, and tumor suppression. We conclude that tirzepatide represents a promising pharmacologic approach for mitigating the procancer effects of obesity. Moreover, strategies promoting greater weight loss than achieved with tirzepatide alone may augment the anticancer benefits of tirzepatide.

8.
Mol Neurodegener ; 19(1): 13, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38282024

RESUMO

BACKGROUND: Bioenergetic maladaptations and axonopathy are often found in the early stages of neurodegeneration. Nicotinamide adenine dinucleotide (NAD), an essential cofactor for energy metabolism, is mainly synthesized by Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) in CNS neurons. NMNAT2 mRNA levels are reduced in the brains of Alzheimer's, Parkinson's, and Huntington's disease. Here we addressed whether NMNAT2 is required for axonal health of cortical glutamatergic neurons, whose long-projecting axons are often vulnerable in neurodegenerative conditions. We also tested if NMNAT2 maintains axonal health by ensuring axonal ATP levels for axonal transport, critical for axonal function. METHODS: We generated mouse and cultured neuron models to determine the impact of NMNAT2 loss from cortical glutamatergic neurons on axonal transport, energetic metabolism, and morphological integrity. In addition, we determined if exogenous NAD supplementation or inhibiting a NAD hydrolase, sterile alpha and TIR motif-containing protein 1 (SARM1), prevented axonal deficits caused by NMNAT2 loss. This study used a combination of techniques, including genetics, molecular biology, immunohistochemistry, biochemistry, fluorescent time-lapse imaging, live imaging with optical sensors, and anti-sense oligos. RESULTS: We provide in vivo evidence that NMNAT2 in glutamatergic neurons is required for axonal survival. Using in vivo and in vitro studies, we demonstrate that NMNAT2 maintains the NAD-redox potential to provide "on-board" ATP via glycolysis to vesicular cargos in distal axons. Exogenous NAD+ supplementation to NMNAT2 KO neurons restores glycolysis and resumes fast axonal transport. Finally, we demonstrate both in vitro and in vivo that reducing the activity of SARM1, an NAD degradation enzyme, can reduce axonal transport deficits and suppress axon degeneration in NMNAT2 KO neurons. CONCLUSION: NMNAT2 ensures axonal health by maintaining NAD redox potential in distal axons to ensure efficient vesicular glycolysis required for fast axonal transport.


Assuntos
Transporte Axonal , NAD , Nicotinamida-Nucleotídeo Adenililtransferase , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Proteínas do Domínio Armadillo/metabolismo , Axônios/metabolismo , Proteínas do Citoesqueleto/metabolismo , Glicólise , Homeostase , NAD/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo
9.
JCI Insight ; 8(19)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37698918

RESUMO

Obesity promotes triple-negative breast cancer (TNBC), and effective interventions are urgently needed to break the obesity-TNBC link. Epidemiologic studies indicate that bariatric surgery reduces TNBC risk, while evidence is limited or conflicted for weight loss via low-fat diet (LFD) or calorie restriction (CR). Using a murine model of obesity-driven TNBC, we compared the antitumor effects of vertical sleeve gastrectomy (VSG) with LFD, chronic CR, and intermittent CR. Each intervention generated weight and fat loss and suppressed tumor growth relative to obese mice (greatest suppression with CR). VSG and CR regimens exerted both similar and unique effects, as assessed using multiomics approaches, in reversing obesity-associated transcript, epigenetics, secretome, and microbiota changes and restoring antitumor immunity. Thus, in a murine model of TNBC, bariatric surgery and CR each reverse obesity-driven tumor growth via shared and distinct antitumor mechanisms, and CR is superior to VSG in reversing obesity's procancer effects.


Assuntos
Cirurgia Bariátrica , Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Restrição Calórica , Modelos Animais de Doenças , Obesidade/complicações , Obesidade/cirurgia
10.
Cancers (Basel) ; 15(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686596

RESUMO

Calorie restriction (CR) inhibits triple-negative breast cancer (TNBC) progression in several preclinical models in association with decreased insulin-like growth factor 1 (IGF1) signaling. To investigate the impact of CR on microRNAs (miRs) that target the IGF1/IGF1R pathway, we used the spontaneous murine model of TNBC, C3(1)/SV40 T-antigen (C3-TAg). In C3-TAg mice, CR reduced body weight, IGF1 levels, and TNBC progression. We evaluated the tumoral expression of 10 miRs. CR increased the expression of miR-199a-3p, miR-199a-5p, miR-486, and miR-15b. However, only miR-15b expression correlated with tumorigenicity in the M28, M6, and M6C C3-TAg cell lines of TNBC progression. Overexpressing miR-15b reduced the proliferation of mouse (M6) and human (MDA-MB-231) cell lines. Serum restriction alone or in combination with low levels of recombinant IGF1 significantly upregulated miR-15b expression and reduced Igf1r in M6 cells. These effects were reversed by the pharmacological inhibition of IGFR with BMS754807. In silico analysis using miR web tools predicted that miR-15b targets genes associated with IGF1/mTOR pathways and the cell cycle. Our findings suggest that CR in association with reduced IGF1 levels could upregulate miR-15b to downregulate Igf1r and contribute to the anticancer effects of CR. Thus, miR-15b may be a therapeutic target for mimicking the beneficial effects of CR against TNBC.

11.
Front Oncol ; 13: 1191332, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37427108

RESUMO

Every cancer genome is unique, resulting in potentially near infinite cancer cell phenotypes and an inability to predict clinical outcomes in most cases. Despite this profound genomic heterogeneity, many cancer types and subtypes display a non-random distribution of metastasis to distant organs, a phenomenon known as organotropism. Proposed factors in metastatic organotropism include hematogenous versus lymphatic dissemination, the circulation pattern of the tissue of origin, tumor-intrinsic factors, compatibility with established organ-specific niches, long-range induction of premetastatic niche formation, and so-called "prometastatic niches" that facilitate successful colonization of the secondary site following extravasation. To successfully complete the steps required for distant metastasis, cancer cells must evade immunosurveillance and survive in multiple new and hostile environments. Despite substantial advances in our understanding of the biology underlying malignancy, many of the mechanisms used by cancer cells to survive the metastatic journey remain a mystery. This review synthesizes the rapidly growing body of literature demonstrating the relevance of an unusual cell type known as "fusion hybrid" cells to many of the hallmarks of cancer, including tumor heterogeneity, metastatic conversion, survival in circulation, and metastatic organotropism. Whereas the concept of fusion between tumor cells and blood cells was initially proposed over a century ago, only recently have technological advancements allowed for detection of cells containing components of both immune and neoplastic cells within primary and metastatic lesions as well as among circulating malignant cells. Specifically, heterotypic fusion of cancer cells with monocytes and macrophages results in a highly heterogeneous population of hybrid daughter cells with enhanced malignant potential. Proposed mechanisms behind these findings include rapid, massive genome rearrangement during nuclear fusion and/or acquisition of monocyte/macrophage features such as migratory and invasive capability, immune privilege, immune cell trafficking and homing, and others. Rapid acquisition of these cellular traits may increase the likelihood of both escape from the primary tumor site and extravasation of hybrid cells at a secondary location that is amenable to colonization by that particular hybrid phenotype, providing a partial explanation for the patterns observed in some cancers with regard to sites of distant metastases.

12.
J Natl Cancer Inst Monogr ; 2023(61): 84-103, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37139971

RESUMO

Intermittent fasting entails restricting food intake during specific times of day, days of the week, religious practice, or surrounding clinically important events. Herein, the metabolic and circadian rhythm mechanisms underlying the proposed benefits of intermittent fasting for the cancer population are described. We summarize epidemiological, preclinical, and clinical studies in cancer published between January 2020 and August 2022 and propose avenues for future research. An outstanding concern regarding the use of intermittent fasting among cancer patients is that fasting often results in caloric restriction, which can put patients already prone to malnutrition, cachexia, or sarcopenia at risk. Although clinical trials do not yet provide sufficient data to support the general use of intermittent fasting in clinical practice, this summary may be useful for patients, caregivers, and clinicians who are exploring intermittent fasting as part of their cancer journey for clinical outcomes and symptom management.


Assuntos
Neoplasias , Obesidade , Humanos , Jejum Intermitente , Restrição Calórica/efeitos adversos , Dieta Redutora/efeitos adversos , Dieta Redutora/métodos , Ritmo Circadiano , Neoplasias/diagnóstico , Neoplasias/epidemiologia , Neoplasias/terapia
13.
J Natl Cancer Inst Monogr ; 2023(61): 149-157, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37139978

RESUMO

The overall goal of the annual Transdisciplinary Research in Energetics and Cancer (TREC) Training Workshop is to provide transdisciplinary training for scientists in energetics and cancer and clinical care. The 2022 Workshop included 27 early-to-mid career investigators (trainees) pursuing diverse TREC research areas in basic, clinical, and population sciences. The 2022 trainees participated in a gallery walk, an interactive qualitative program evaluation method, to summarize key takeaways related to program objectives. Writing groups were formed and collaborated on this summary of the 5 key takeaways from the TREC Workshop. The 2022 TREC Workshop provided a targeted and unique networking opportunity that facilitated meaningful collaborative work addressing research and clinical needs in energetics and cancer. This report summarizes the 2022 TREC Workshop's key takeaways and future directions for innovative transdisciplinary energetics and cancer research.


Assuntos
Medicina , Neoplasias , Humanos , Pesquisa Interdisciplinar , Neoplasias/diagnóstico , Neoplasias/terapia , Neoplasias/epidemiologia , Avaliação de Programas e Projetos de Saúde/métodos , Pesquisadores/educação
14.
Surg Obes Relat Dis ; 19(7): 772-780, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37120355

RESUMO

Obesity is associated with an increased risk of at least 13 different cancers, as well as worse cancer outcomes and increased cancer mortality. As rates continue to rise both in the United States and worldwide, obesity is poised to become the leading lifestyle-related risk factor for cancer. Currently, the most effective treatment for patients with severe obesity is bariatric surgery. Multiple cohort studies have demonstrated a consistent >30% decreased risk of cancer incidence in women, but not men, following bariatric surgery. However, the physiologic mechanisms driving obesity-associated cancer and the cancer-protective effect of bariatric surgery are not clearly defined. In this review, we highlight emerging concepts in the mechanistic understanding of obesity-associated cancer. Evidence from both human studies and preclinical animal models suggest that obesity drives carcinogenesis through dysregulation of systemic metabolism, immune dysfunction, and an altered gut microbiome. Additionally, we present related findings to suggest that bariatric surgery may disrupt and even reverse many of these mechanisms. Finally, we discuss the use of preclinical bariatric surgery animal models in the study of cancer biology. The prevention of cancer is emerging as an important indication for bariatric surgery. Elucidating the mechanisms through which bariatric surgery limits carcinogenesis is critical to developing a variety of interventions that intercept obesity-driven cancer.


Assuntos
Cirurgia Bariátrica , Neoplasias , Obesidade Mórbida , Humanos , Feminino , Estados Unidos , Obesidade/complicações , Obesidade/cirurgia , Cirurgia Bariátrica/efeitos adversos , Obesidade Mórbida/cirurgia , Neoplasias/etiologia , Neoplasias/prevenção & controle , Carcinogênese
15.
J Nat Prod ; 86(3): 638-652, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36853972

RESUMO

Algoa Bay, the largest crenulate bay on the southeastern coast of South Africa, is currently one of the most well-studied marine ecosystems in southern Africa. A plethora of endemic marine invertebrates inhabits the benthic reefs on the western edge of the Bay in close proximity to South Africa's sixth largest city. Over the past 25 years, South African marine natural products chemists, together with international collaborators from the US National Cancer Institute and other US institutions, have focused their attention on Algoa Bay's benthic marine invertebrates as a potential source of new anticancer compounds. This review commemorates a quarter of a century of marine biodiscovery in Algoa Bay and presents the structures and bioactivities of 49 new and 36 known specialized metabolites isolated from two molluscs, eight ascidians, and six sponges. Thirty-nine of these compounds were cytotoxic to cancer cells in vitro with 20 exhibiting moderate to potent cytotoxicity. Six other compounds exhibited antimicrobial activity. Foremost among the potential anticancer compounds is mandelalide A (38) from the Algoa Bay ascidian Lissoclinum species.


Assuntos
Ecossistema , Urocordados , Animais , África do Sul , Baías , Organismos Aquáticos
16.
J Am Pharm Assoc (2003) ; 63(4S): S64-S68, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36609054

RESUMO

OBJECTIVES: To evaluate providing an at-home medication disposal kit on opioid disposal behaviors. Self-report of prior disposal behaviors also was assessed to describe the sample. DESIGN: Pilot study with randomization. Surgery outpatients were counseled on medication disposal by a pharmacist from the outpatient community pharmacy at the bedside and given an informational pamphlet detailing recommended disposal methods. Patients on even-numbered dates also received an at-home medication disposal system, creating a quasi-randomized assignment. SETTING: Hospital outpatient surgery center. PARTICIPANTS: Ambulatory surgery outpatients filling an opioid prescription. OUTCOME MEASURES: Patients were called one month after discharge to answer a structured interview about their disposal behaviors. Responses were recorded. Descriptive statistics were calculated to describe disposal behaviors, and chi-squared and t-tests were used to assess group differences. RESULTS: A total of 45 patients participated, with 24 receiving a disposal packet. Of the 23 patients that had left-over tablets, 8 patients disposed of them. Seven (30.4%) of patients with leftovers disposed of their medication safely as recommended by the pharmacist during counseling. Rates of appropriate disposal were statistically similar. Of the 14 patients who had left-over opioids and received a disposal packet, 5 (35.7%) patients used the provided packet. Of the 9 patients with left-over opioids who did not receive the disposal packet, 2 (22.2%) patients disposed of their left-over opioids appropriately. CONCLUSION: This pilot provides insight into the implementation of medication disposal services in the ambulatory surgery setting and the potential impact that a community pharmacist can have in promoting safe medication disposal. While the study demonstrated similar rates of disposal, those with the disposal packet exclusively reported using the packet as their method of disposal, suggesting having the packet on-hand simplified decision-making.


Assuntos
Analgésicos Opioides , Farmacêuticos , Humanos , Analgésicos Opioides/uso terapêutico , Projetos Piloto , Alta do Paciente , Aconselhamento
17.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362045

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces immune-mediated type 1 interferon (IFN-1) production, the pathophysiology of which involves sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1) tetramerization and the cytosolic DNA sensor cyclic-GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. As a result, type I interferonopathies are exacerbated. Aspirin inhibits cGAS-mediated signaling through cGAS acetylation. Acetylation contributes to cGAS activity control and activates IFN-1 production and nuclear factor-κB (NF-κB) signaling via STING. Aspirin and dapsone inhibit the activation of both IFN-1 and NF-κB by targeting cGAS. We define these as anticatalytic mechanisms. It is necessary to alleviate the pathologic course and take the lag time of the odds of achieving viral clearance by day 7 to coordinate innate or adaptive immune cell reactions.


Assuntos
Tratamento Farmacológico da COVID-19 , Interferon Tipo I , Humanos , Acetilação , NF-kappa B/metabolismo , Reposicionamento de Medicamentos , Proteínas de Membrana/metabolismo , SARS-CoV-2 , Nucleotidiltransferases/metabolismo , Interferon Tipo I/metabolismo , Aspirina , Imunidade Inata/genética
18.
Cancer Prev Res (Phila) ; 15(9): 581-594, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35696725

RESUMO

The reversibility of the procancer effects of obesity was interrogated in formerly obese C57BL/6 mice that lost weight via a nonrestricted low-fat diet (LFD) or 3 distinct calorie-restricted (CR) regimens (low-fat CR, Mediterranean-style CR, or intermittent CR). These mice, along with continuously obese mice and lean control mice, were orthotopically injected with E0771 cells, a mouse model of triple-negative breast cancer. Tumor weight, systemic cytokines, and incidence of lung metastases were elevated in the continuously obese and nonrestricted LFD mice relative to the 3 CR groups. Gene expression differed between the obese and all CR groups, but not the nonrestricted LFD group, for numerous tumoral genes associated with epithelial-to-mesenchymal transition as well as several genes in the normal mammary tissue associated with hypoxia, reactive oxygen species production, and p53 signaling. A high degree of concordance existed between differentially expressed mammary tissue genes from obese versus all CR mice and a microarray dataset from overweight/obese women randomized to either no intervention or a CR diet. Assessment of differentially methylated regions in mouse mammary tissues revealed that obesity, relative to the 4 weight loss groups, was associated with significant DNA hypermethylation. However, the anticancer effects of the CR interventions were independent of their ability to reverse obesity-associated mammary epigenetic reprogramming. Taken together, these preclinical data showing that the procancer effects of obesity are reversible by various forms of CR diets strongly support translational exploration of restricted dietary patterns for reducing the burden of obesity-associated cancers. PREVENTION RELEVANCE: Obesity is an established risk and progression factor for triple-negative breast cancer (TNBC). Given rising global rates of obesity and TNBC, strategies to reduce the burden of obesity-driven TNBC are urgently needed. We report the genomic, epigenetic, and procancer effects of obesity are reversible by various calorie restriction regimens.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Epigênese Genética , Feminino , Genômica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Redução de Peso
19.
Cancer Prev Res (Phila) ; 15(8): 481-495, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35653548

RESUMO

Obesity is associated with an increased risk of colon cancer. Our current study examines whether weight loss and/or treatment with the NSAID sulindac suppresses the protumor effects of obesity in a mouse model of colon cancer. Azoxymethane-treated male FVB/N mice were fed a low-fat diet (LFD) or high-fat diet (HFD) for 15 weeks, then HFD mice were randomized to remain on HFD (obese) or switch to LFD [formerly obese (FOb-LFD)]. Within the control (LFD), obese, and FOb-LFD groups, half the mice started sulindac treatment (140 ppm in the diet). All mice were euthanized 7 weeks later. FOb-LFD mice had intermediate body weight levels, lower than obese but higher than control (P < 0.05). Sulindac did not affect body weight. Obese mice had greater tumor multiplicity and burden than all other groups (P < 0.05). Transcriptomic profiling indicated that weight loss and sulindac each modulate the expression of tumor genes related to invasion and may promote a more antitumor immune landscape. Furthermore, the fecal microbes Coprobacillus, Prevotella, and Akkermansia muciniphila were positively correlated with tumor multiplicity and reduced by sulindac in obese mice. Coprobacillus abundance was also decreased in FOb-LFD mice. In sum, weight loss and sulindac treatment, alone and in combination, reversed the effects of chronic obesity on colon tumor multiplicity and burden. Our findings suggest that an investigation regarding the effects of NSAID treatment on colon cancer risk and/or progression in obese individuals is warranted, particularly for those unable to achieve moderate weight loss. PREVENTION RELEVANCE: Obesity is a colon cancer risk and/or progression factor, but the underlying mechanisms are incompletely understood. Herein we demonstrate that obesity enhances murine colon carcinogenesis and expression of numerous tumoral procancer and immunosuppressive pathways. Moreover, we establish that weight loss via LFD and/or the NSAID sulindac mitigate procancer effects of obesity.


Assuntos
Neoplasias do Colo , Microbiota , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Peso Corporal , Neoplasias do Colo/etiologia , Neoplasias do Colo/prevenção & controle , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Sulindaco/farmacologia , Transcriptoma , Redução de Peso
20.
Cancer Metastasis Rev ; 41(3): 607-625, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35752704

RESUMO

Obesity, exceptionally prevalent in the USA, promotes the incidence and progression of numerous cancer types including breast cancer. Complex, interacting metabolic and immune dysregulation marks the development of both breast cancer and obesity. Obesity promotes chronic low-grade inflammation, particularly in white adipose tissue, which drives immune dysfunction marked by increased pro-inflammatory cytokine production, alternative macrophage activation, and reduced T cell function. Breast tissue is predominantly composed of white adipose, and developing breast cancer readily and directly interacts with cells and signals from adipose remodeled by obesity. This review discusses the biological mechanisms through which obesity promotes breast cancer, the role of obesity in breast cancer health disparities, and dietary interventions to mitigate the adverse effects of obesity on breast cancer. We detail the intersection of obesity and breast cancer, with an emphasis on the shared and unique patterns of immune dysregulation in these disease processes. We have highlighted key areas of breast cancer biology exacerbated by obesity, including incidence, progression, and therapeutic response. We posit that interception of obesity-driven breast cancer will require interventions that limit protumor signaling from obese adipose tissue and that consider genetic, structural, and social determinants of the obesity-breast cancer link. Finally, we detail the evidence for various dietary interventions to offset obesity effects in clinical and preclinical studies of breast cancer. In light of the strong associations between obesity and breast cancer and the rising rates of obesity in many parts of the world, the development of effective, safe, well-tolerated, and equitable interventions to limit the burden of obesity on breast cancer are urgently needed.


Assuntos
Neoplasias da Mama , Tecido Adiposo/metabolismo , Neoplasias da Mama/complicações , Neoplasias da Mama/etiologia , Feminino , Humanos , Inflamação/metabolismo , Obesidade/complicações , Obesidade/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA