Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(26): 14404-14416, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37338957

RESUMO

Cytochrome P460s are heme enzymes that oxidize hydroxylamine to nitrous oxide. They bear specialized "heme P460" cofactors that are cross-linked to their host polypeptides by a post-translationally modified lysine residue. Wild-type N. europaea cytochrome P460 may be isolated as a cross-link-deficient proenzyme following anaerobic overexpression in E. coli. When treated with peroxide, this proenzyme undergoes maturation to active enzyme with spectroscopic and catalytic properties that match wild-type cyt P460. This maturation reactivity requires no chaperones─it is intrinsic to the protein. This behavior extends to the broader cytochrome c'ß superfamily. Accumulated data reveal key contributions from the secondary coordination sphere that enable selective, complete maturation. Spectroscopic data support the intermediacy of a ferryl species along the maturation pathway.


Assuntos
Citocromos c , Escherichia coli , Heme/química , Análise Espectral , Precursores Enzimáticos
2.
medRxiv ; 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35411349

RESUMO

Background: A profound need remains to develop further therapeutics for treatment of those hospitalized with COVID-19. Based on data implicating the type 2 cytokine interleukin (IL)-13 as a significant factor leading to critical COVID-19, this trial was designed to assess dupilumab, a monoclonal antibody that blocks IL-13 and IL-4 signaling, for treatment of inpatients with COVID-19. Methods: We conducted a phase IIa randomized double-blind placebo-controlled trial to assess the safety and efficacy of dupilumab plus standard of care versus placebo plus standard of care in mitigating respiratory failure and death in those hospitalized with COVID-19. Subjects were followed prospectively for 60 days. The primary endpoint was the proportion of patients alive and free of invasive mechanical ventilation at 28 days. Findings: Forty eligible subjects were enrolled from June to November of 2021. There was no difference in adverse events nor in ventilator free survival at day 28 between study arms. However, for the secondary endpoint of mortality at day 60, subjects randomized to dupilumab had a higher survival rate compared to the placebo group (89.5% vs 76.2%, adjusted HR 0.05, 95% CI: 0.0-0.72, p=0.03). There were fewer subjects admitted to the ICU in the dupilumab group compared to placebo (33.3% vs 66.7%; adjusted HR 0.44, 95% CI: 0.09-2.09, p=0.30). Lastly, we saw downstream evidence of IL-4 and IL-13 signaling blockade in the dupilumab group through analysis of immune biomarkers over time. Interpretation: Dupilumab was well tolerated and improved 60-day survival in patients hospitalized with moderate to severe COVID-19. Trial Registration: This trial is registered with ClinicalTrials.gov, NCT04920916 . Funding: Virginia Biosciences Health Research Corporation, PBM C19, Henske Family Foundation, National Institutes of Health, National Cancer Institute.

3.
Inorg Chem ; 60(24): 18662-18673, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34889590

RESUMO

The exploration of pyridine-imine (PI) iron complexes that exhibit redox noninnocence (RNI) led to several interesting discoveries. The reduction of (PI)FeX2 species afforded disproportionation products such as (dmpPI)2FeX (dmp = 2,6-Me2-C6H3, X = Cl, Br; 8-X) and (dippPI)2FeX (dipp = 2,6-iPr2-C6H3, X = Cl, Br; 9-X), which were independently prepared by reductions of (PI)FeX2 in the presence of PI. The crystal structure of 8-Br possessed an asymmetric unit with two distinct electromers, species with different electronic GSs: a low-spin (S = 1/2) configuration derived from an intermediate-spin S = 1 core antiferromagnetically (AF) coupled to an S = 1/2 PI ligand, and an S = 3/2 center resulting from a high-spin S = 2 core AF-coupled to an S = 1/2 PI ligand. Calculations were used to energetically compare plausible ground states. Polydentate diazepane-PI (DHPI) ligands were applied to the synthesis of monomeric dihalides (DHPI)FeX2 (X = Cl, 1-Cl2; X = Br, 1-Br2); reduction generated the highly distorted bioctahedral dimers (DHPA)2Fe2X2 ((3-X)2) containing a C-C bond formed from imine coupling; the monomers 1-X2 could be regenerated upon Ph3CX oxidation. Dihalides and their reduced counterparts were subjected to various alkyl halides and methyl methacrylate (MMA), generating polymers with little to no molecular weight control, indicative of simple radical-initiated polymerization.

4.
J Am Chem Soc ; 143(25): 9314-9319, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34154323

RESUMO

All radical S-adenosylmethionine (radical-SAM) enzymes, including the noncanonical radical-SAM enzyme diphthamide biosynthetic enzyme Dph1-Dph2, require at least one [4Fe-4S](Cys)3 cluster for activity. It is well-known in the radical-SAM enzyme community that the [4Fe-4S](Cys)3 cluster is extremely air-sensitive and requires strict anaerobic conditions to reconstitute activity in vitro. Thus, how such enzymes function in vivo in the presence of oxygen in aerobic organisms is an interesting question. Working on yeast Dph1-Dph2, we found that consistent with the known oxygen sensitivity, the [4Fe-4S] cluster is easily degraded into a [3Fe-4S] cluster. Remarkably, the small iron-containing protein Dph3 donates one Fe atom to convert the [3Fe-4S] cluster in Dph1-Dph2 to a functional [4Fe-4S] cluster during the radical-SAM enzyme catalytic cycle. This mechanism to maintain radical-SAM enzyme activity in aerobic environments is likely general, and Dph3-like proteins may exist to keep other radical-SAM enzymes functional in aerobic environments.


Assuntos
Histidina/análogos & derivados , Proteínas Ferro-Enxofre/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ditionita/metabolismo , Histidina/biossíntese , Ferro/química , Proteínas Ferro-Enxofre/química , Fator 2 de Elongação de Peptídeos/metabolismo , Proteínas Repressoras/química , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química
5.
Acc Chem Res ; 53(12): 2925-2935, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33180458

RESUMO

Ammonia-oxidizing bacteria (AOB) convert ammonia (NH3) to nitrite (NO2-) as their primary metabolism and thus provide a blueprint for the use of NH3 as a chemical fuel. The first energy-producing step involves the homotrimeric enzyme hydroxylamine oxidoreductase (HAO), which was originally reported to oxidize hydroxylamine (NH2OH) to NO2-. HAO uses the heme P460 cofactor as the site of catalysis. This heme is supported by seven other c hemes in each monomer that mediate electron transfer. Heme P460 cofactors are c-heme-based cofactors that have atypical protein cross-links between the peptide backbone and the porphyrin macrocycle. This cofactor has been observed in both the HAO and cytochrome (cyt) P460 protein families. However, there are differences; specifically, HAO uses a single tyrosine residue to form two covalent attachments to the macrocycle whereas cyt P460 uses a lysine residue to form one. In Nitrosomonas europaea, which expresses both HAO and cyt P460, these enzymes achieve the oxidation of NH2OH and were both originally reported to produce NO2-. Each can inspire means to effect controlled release of chemical energy.Spectroscopically studying the P460 cofactors of HAO is complicated by the 21 non-P460 heme cofactors, which obscure the active site. However, monoheme cyt P460 is more approachable biochemically and spectroscopically. Thus, we have used cyt P460 to study biological NH2OH oxidation. Under aerobic conditions substoichiometric production of NO2- was observed along with production of nitrous oxide (N2O). Under anaerobic conditions, however, N2O was the exclusive product of NH2OH oxidation. We have advanced our understanding of the mechanism of this enzyme and have showed that a key intermediate is a ferric nitrosyl that can dissociate the bound nitric oxide (NO) molecule and react with O2, thus producing NO2- abiotically. Because N2O was the true product of one P460 cofactor-containing enzyme, this prompted us to reinvestigate whether NO2- is enzymatically generated from HAO catalysis. Like cyt P460, we showed that HAO does not produce NO2- enzymatically, but unlike cyt P460, its final product is NO, establishing it as an intermediate of nitrification. More broadly, NO can be recognized as a molecule common to the primary metabolisms of all organisms involved in nitrogen "defixation".Delving deeper into cyt P460 yielded insights broadly applicable to controlled biochemical redox processes. Studies of an inactive cyt P460 from Nitrosomonas sp. AL212 showed that this enzyme was unable to oxidize NH2OH because it lacked a glutamate residue in its secondary coordination sphere that was present in the active N. europaea cyt P460 variant. Restoring the Glu residue imbued activity, revealing that a second-sphere base is Nature's key to controlled oxidation of NH2OH. A key lesson of bioinorganic chemistry is reinforced: the polypeptide matrix is an essential part of dictating function. Our work also exposed some key functional contributions of noncanonical heme-protein cross-links. The heme-Lys cross-link of cyt P460 enforces the relative position of the cofactor and second-sphere residues. Moreover, the cross-link prevents the dissociation of the axial histidine residue, which stops catalysis, emphasizing the importance of this unique post-translational modification.


Assuntos
Heme/análogos & derivados , Óxido Nítrico/química , Oxirredutases/metabolismo , Biocatálise , Espectroscopia de Ressonância de Spin Eletrônica , Heme/química , Hidroxilamina/química , Hidroxilamina/metabolismo , Lisina/química , Mutagênese , Óxido Nítrico/metabolismo , Nitrosomonas europaea/enzimologia , Oxirredução , Oxirredutases/química , Oxirredutases/genética
6.
Proc Natl Acad Sci U S A ; 116(30): 14955-14960, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31270241

RESUMO

Many bacteria contain cytoplasmic chemoreceptors that lack sensor domains. Here, we demonstrate that such cytoplasmic receptors found in 8 different bacterial and archaeal phyla genetically couple to metalloproteins related to ß-lactamases and nitric oxide reductases. We show that this oxygen-binding di-iron protein (ODP) acts as a sensor for chemotactic responses to both iron and oxygen in the human pathogen Treponema denticola (Td). The ODP di-iron site binds oxygen at high affinity to reversibly form an unusually stable µ-peroxo adduct. Crystal structures of ODP from Td and the thermophile Thermotoga maritima (Tm) in the Fe[III]2-O22-, Zn[II], and apo states display differences in subunit association, conformation, and metal coordination that indicate potential mechanisms for sensing. In reconstituted systems, iron-peroxo ODP destabilizes the phosphorylated form of the receptor-coupled histidine kinase CheA, thereby providing a biochemical link between oxygen sensing and chemotaxis in diverse prokaryotes, including anaerobes of ancient origin.


Assuntos
Proteínas de Bactérias/metabolismo , Quimiotaxia , Proteínas de Ligação ao Ferro/metabolismo , Oxirredutases/metabolismo , Transdução de Sinais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Histidina Quinase/metabolismo , Ferro/metabolismo , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/genética , Oxirredutases/química , Oxirredutases/genética , Oxigênio/metabolismo , Filogenia , Ligação Proteica , Thermotoga maritima/enzimologia , Thermotoga maritima/genética , Treponema denticola/enzimologia , Treponema denticola/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA