Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Pharmaceutics ; 16(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543328

RESUMO

Therapeutic microbubbles (thMBs) contain drug-filled liposomes linked to microbubbles and targeted to vascular proteins. Upon the application of a destructive ultrasound trigger, drug uptake to tumour is improved. However, the structure of thMBs currently uses powerful non-covalent bonding of biotin with avidin-based proteins to link both the liposome to the microbubble (MB) and to bind the targeting antibody to the liposome-MB complex. This linkage is not currently FDA-approved, and therefore, an alternative, maleimide-thiol linkage, that is currently used in antibody-drug conjugates was examined. In a systematic manner, vascular endothelial growth factor receptor 2 (VEGFR2)-targeted MBs and thMBs using both types of linkages were examined for their ability to specifically bind to VEGFR2 in vitro and for their ultrasound imaging properties in vivo. Both showed equivalence in the production of the thMB structure, in vitro specificity of binding and safety profiles. In vivo imaging showed subtle differences for thMBs where biotin thMBs had a faster wash-in rate than thiol thMBs, but thiol thMBs were longer-lived. The drug delivery to tumours was also equivalent, but interestingly, thiol thMBs altered the biodistribution of delivery away from the lungs and towards the liver compared to biotin thMBs, which is an improvement in biosafety.

2.
Lab Chip ; 23(6): 1674-1693, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36779251

RESUMO

The vascular system is the primary route for the delivery of therapeutic drugs throughout the body and is an important barrier at the region of disease interest, such as a solid tumour. The development of complex 3D tumour cultures has progressed significantly in recent years however, the generation of perfusable vascularised tumour models still presents many challenges. This study presents a microfluidic-based vasculature system that can be induced to display properties of tumour-associated blood vessels without direct incorporation of tumour cells. Conditioning healthy endothelial-fibroblast cell vasculature co-cultures with media taken from tumour cell cultures was found to result in the formation of disorganised, tortuous networks which display characteristics consistent with those of tumour-associated vasculature. Integrin αvß3, a cell adhesion receptor associated with angiogenesis, was found to be upregulated in vasculature co-cultures conditioned with tumour cell media (TCM) - consistent with the reported αvß3 expression pattern in angiogenic tumour vasculature in vivo. Increased accumulation of liposomes (LSs) conjugated to antibodies against αvß3 was observed in TCM networks compared to non-conditioned networks, indicating αvß3 may be a potential target for the delivery of drugs specifically to tumour vasculature. Furthermore, the use of microbubbles (MBs) and ultrasound (US) to further enhance the delivery of LSs to TCM-conditioned vasculature was investigated. Quantification of fluorescent LS accumulation post-perfusion of the vascular network showed 3-fold increased accumulation with the use of MBs and US, suggesting that targeted LS delivery could be further improved with the use of locally administered MBs and US.


Assuntos
Lipossomos , Microbolhas , Humanos , Neovascularização Patológica/metabolismo , Ultrassonografia , Dispositivos Lab-On-A-Chip
3.
Langmuir ; 38(45): 13943-13954, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36322191

RESUMO

Lipid-shelled nanobubbles (NBs) are emerging as potential dual diagnostic and therapeutic agents. Similar to their micron-scale counterparts, microbubbles (1-10 µm), they can act as ultrasound contrast agents as well as locally enhance therapeutic uptake. Recently, it has been shown that the reduced size of NBs (<1 µm) promotes increased uptake and accumulation in tumor interstitial space, which can enhance their diagnostic and therapeutic performance. However, accurate characterization of NB size and concentration is challenging and may limit their translation into clinical use. Their submicron nature limits accuracy of conventional microscopy techniques, while common light scattering techniques fail to distinguish between subpopulations present in NB samples (i.e., bubbles and liposomes). Due to the difficulty in the characterization of NBs, relatively little is known about the influence of size on their therapeutic performance. In this study, we describe a novel method of using a commercially available nanoparticle tracking analysis system, to distinguish between NBs and liposomes based on their differing optical properties. We used this technique to characterize three NB populations of varying size, isolated via centrifugation, and subsequently used this to assess their potential for enhancing localized delivery. Confocal fluorescence microscopy and image analysis were used to quantify the ultrasound enhanced uptake of fluorescent dextran into live colorectal cancer cells. Our results showed that the amount of localized uptake did not follow the expected trends, in which larger NB populations out-perform smaller NBs, at matched concentration. To understand this observed behavior, the stability of each NB population was assessed. It was found that dilution of the NB samples from their stock concentration influences their stability, and it is hypothesized that both the total free lipid and interbubble distance play a role in NB lifetime, in agreement with previously proposed theories and models.


Assuntos
Lipossomos , Microbolhas , Sistemas de Liberação de Medicamentos/métodos , Ultrassonografia/métodos , Meios de Contraste , Lipídeos
4.
Nat Commun ; 13(1): 2178, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35449140

RESUMO

Photodynamic therapy (PDT) offers several advantages for treating cancers, but its efficacy is highly dependent on light delivery to activate a photosensitizer. Advances in wireless technologies enable remote delivery of light to tumors, but suffer from key limitations, including low levels of tissue penetration and photosensitizer activation. Here, we introduce DeepLabCut (DLC)-informed low-power wireless telemetry with an integrated thermal/light simulation platform that overcomes the above constraints. The simulator produces an optimized combination of wavelengths and light sources, and DLC-assisted wireless telemetry uses the parameters from the simulator to enable adequate illumination of tumors through high-throughput (<20 mice) and multi-wavelength operation. Together, they establish a range of guidelines for effective PDT regimen design. In vivo Hypericin and Foscan mediated PDT, using cancer xenograft models, demonstrates substantial suppression of tumor growth, warranting further investigation in research and/or clinical settings.


Assuntos
Neoplasias , Fotoquimioterapia , Animais , Inteligência Artificial , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Telemetria
5.
Pharmaceutics ; 14(3)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35335995

RESUMO

Advanced drug delivery systems, such as ultrasound-mediated drug delivery, show great promise for increasing the therapeutic index. Improvements in delivery by altering the ultrasound parameters have been studied heavily in vitro but relatively little in vivo. Here, the same therapeutic microbubble and tumour type are used to determine whether altering ultrasound parameters can improve drug delivery. Liposomes were loaded with SN38 and attached via avidin: biotin linkages to microbubbles. The whole structure was targeted to the tumour vasculature by the addition of anti-vascular endothelial growth factor receptor 2 antibodies. Tumour drug delivery and metabolism were quantified in SW480 xenografts after application of an ultrasound trigger to the tumour region. Increasing the trigger duration from 5 s to 2 min or increasing the number of 5 s triggers did not improve drug delivery, nor did changing to a chirp trigger designed to stimulate a greater proportion of the microbubble population, although this did show that the short tone trigger resulted in greater release of free SN38. Examination of ultrasound triggers in vivo to improve drug delivery is justified as there are multiple mechanisms at play that may not allow direct translation from in vitro findings. In this setting, a short tone burst gives the best ultrasound parameters for tumoural drug delivery.

6.
ACS Appl Mater Interfaces ; 14(9): 11078-11091, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35196008

RESUMO

Nanomedicines, while having been approved for cancer therapy, present many challenges such as low stability, rapid clearance, and nonspecificity leading to off-target toxicity. Cubosomes are porous lyotropic liquid crystalline nanoparticles that have shown great premise as drug delivery vehicles; however, their behavior in vivo is largely underexplored, hindering clinical translation. Here, we have engineered cubosomes based on the space group Im3m that are loaded with copper acetylacetonate as a model drug, and their surfaces are functionalized for the first time with Affimer proteins via copper-free click chemistry to actively target overexpressed carcinoembryonic antigens on LS174T colorectal cancer cells. Unlike nontargeted cubosomes, Affimer tagged cubosomes showed preferential accumulation in cancer cells compared to normal cells not only in vitro (2D monolayer cell culture and 3D spheroid models) but also in vivo in colorectal cancer mouse xenografts, while exhibiting low nonspecific absorption and toxicity in other vital organs. Cancerous spheroids had maximum cell death compared to noncancerous cells upon targeted delivery. Xenografts subjected to targeted drug-loaded cubosomes showed a 5-7-fold higher drug accumulation in the tumor tissue compared to the liver, kidneys, and other vital organs, a significant decrease in tumor growth, and an increased survival rate compared to the nontargeted group. This work encompasses the first thorough preclinical investigation of Affimer targeted cubosomes as a cancer therapeutic.


Assuntos
Antígeno Carcinoembrionário/metabolismo , Proteínas de Transporte/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Animais , Linhagem Celular , Química Click , Liberação Controlada de Fármacos , Humanos , Hidroxibutiratos/farmacologia , Hidroxibutiratos/uso terapêutico , Hidroxibutiratos/toxicidade , Cristais Líquidos/química , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Pentanonas/farmacologia , Pentanonas/uso terapêutico , Pentanonas/toxicidade , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Pharmaceutics ; 13(10)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34683944

RESUMO

Gold nanoparticles have been indicated for use in a diagnostic and/or therapeutic role in several cancer types. The use of gold nanorods (AuNRs) with a surface plasmon resonance (SPR) in the second near-infrared II (NIR-II) optical window promises deeper anatomical penetration through increased maximum permissible exposure and lower optical attenuation. In this study, the targeting and therapeutic efficiency of anti-epidermal growth factor receptor (EGFR)-antibody-functionalised AuNRs with an SPR at 1064 nm was evaluated in vitro. Four cell lines, KYSE-30, CAL-27, Hep-G2 and MCF-7, which either over- or under-expressed EGFR, were used once confirmed by flow cytometry and immunofluorescence. Optical microscopy demonstrated a significant difference (p < 0.0001) between targeted AuNRs (tAuNRs) and untargeted AuNRs (uAuNRs) in all four cancer cell lines. This study demonstrated that anti-EGFR functionalisation significantly increased the association of tAuNRs with each EGFR-positive cancer cell. Considering this, the MTT assay showed that photothermal therapy (PTT) significantly increased cancer cell death (>97%) in head and neck cancer cell line CAL-27 using tAuNRs but not uAuNRs, apoptosis being the major mechanism of cell death. This successful targeting and therapeutic outcome highlight the future use of tAuNRs for molecular photoacoustic imaging or tumour treatment through plasmonic photothermal therapy.

8.
Nanomedicine ; 36: 102401, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33894396

RESUMO

The hydrophobicity of a drug can be a major challenge in its development and prevents the clinical translation of highly potent anti-cancer agents. We have used a lipid-based nanoemulsion termed Lipid-Oil-Nanodroplets (LONDs) for the encapsulation and in vivo delivery of the poorly bioavailable combretastatin A4 (CA4). Drug delivery with CA4 LONDs was assessed in a xenograft model of colorectal cancer. LC-MS/MS analysis revealed that CA4 LONDs, administered at a drug dose four times lower than drug control, achieved equivalent concentrations of CA4 intratumorally. We then attached CA4 LONDs to microbubbles (MBs) and targeted this construct to VEGFR2. A reduction in tumor perfusion was observed in CA4 LONDs-MBs treated tumors. A combination study with irinotecan demonstrated a greater reduction in tumor growth and perfusion (P = 0.01) compared to irinotecan alone. This study suggests that LONDs, either alone or attached to targeted MBs, have the potential to significantly enhance tumor-specific hydrophobic drug delivery.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Lipídeos , Microbolhas , Nanoestruturas , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipídeos/química , Lipídeos/farmacocinética , Lipídeos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Estilbenos/química , Estilbenos/farmacocinética , Estilbenos/farmacologia , Ultrassonografia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Oncol Lett ; 21(4): 263, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33664826

RESUMO

With its significant contribution to cancer mortality globally, advanced colorectal cancer (CRC) requires new treatment strategies. However, despite recent good results for mismatch repair (MMR)-deficient CRC and other malignancies, such as melanoma, the vast majority of MMR-proficient CRCs are resistant to checkpoint inhibitor (CKI) therapy. MMR-proficient CRCs commonly develop from precursor adenomas with enhanced Wnt-signalling due to adenomatous polyposis coli (APC) mutations. In melanomas with enhanced Wnt signalling due to stabilized ß-catenin, immune anergy and resistance to CKI therapy has been observed, which is dependent on micro-environmental myelomonocytic (MM) cell depletion in melanoma models. However, MM populations of colorectal adenomas or CRC have not been studied. To characterize resident intestinal MM cell populations during the early stages of tumorigenesis, the present study utilized the ApcMin/+ mouse as a model of MMR-proficient CRC, using enhanced green fluorescent protein (EGFP) expression in the mouse lysozyme (M-lys) lys-EGFP/+ mouse as a pan-myelomonocytic cell marker and a panel of murine macrophage surface markers. Total intestinal lamina propria mononuclear cell (LPMNC) numbers significantly decreased with age (2.32±1.39×107 [n=4] at 33 days of age vs. 1.06±0.24×107 [n=8] at 109 days of age) during intestinal adenoma development in ApcMin/+ mice (P=0.05; unpaired Student's t-test), but not in wild-type littermates (P=0.35). Decreased total LPMNC numbers were associated with atrophy of intestinal lymphoid follicles and the absence of MM/lymphoid cell aggregates in ApcMin/+ mouse intestine, but not spleen, compared with wild-type mice. Furthermore, during the early stage of intestinal adenoma development, there was a two-fold reduction of M-lys expressing cells (P=0.05) and four-fold reduction of ER-HR3 (macrophage sub-set) expressing cells (P=0.05; two tailed Mann-Whitney U test) in mice with reduced total intestinal LPMNCs (n=3). Further studies are necessary to determine the relevance of these findings to immune-surveillance of colorectal adenomas or MMR-proficient CRC CKI therapy resistance.

11.
Cancer Chemother Pharmacol ; 87(2): 173-184, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33040178

RESUMO

PURPOSE: The naturally-occurring omega-3 polyunsaturated fatty acid eicosapentaenoic acid (EPA) is safe, well-tolerated and inexpensive, making it an attractive anti-cancer intervention. However, EPA has only modest anti-colorectal cancer (CRC) activity, when used alone. Both cyclooxygenase (COX) isoforms metabolise EPA and are over-expressed in CRC cells. We investigated whether COX inhibition increases the sensitivity of CRC cells to growth inhibition by EPA. METHODS: A panel of 18 human and mouse CRC cell lines was used to characterize the differential sensitivity of CRC cells to the growth inhibitory effects of EPA. The effect of CRISPR-Cas9 genetic deletion and pharmacological inhibition of COX-1 and COX-2 on the anti-cancer activity of EPA was determined using in vitro and in vivo models. RESULTS: Genetic ablation of both COX isoforms increased sensitivity of CT26 mouse CRC cells to growth inhibition by EPA in vitro and in vivo. The non-selective COX inhibitor aspirin and the selective COX-2 inhibitor celecoxib increased sensitivity of several human and mouse CRC cell lines to EPA in vitro. However, in a MC38 mouse CRC cell tumour model, with dosing that mirrored low-dose aspirin use in humans, thereby producing significant platelet COX-1 inhibition, there was ineffective intra-tumoral COX-2 inhibition by aspirin and no effect on EPA sensitivity of MC38 cell tumours. CONCLUSION: Cyclooxygenase inhibition by non-steroidal anti-inflammatory drugs represents a therapeutic opportunity to augment the modest anti-CRC activity of EPA. However, intra-tumoral COX inhibition is likely to be critical for this drug-nutrient interaction and careful tissue pharmacodynamic profiling is required in subsequent pre-clinical and human studies.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Ácido Eicosapentaenoico/farmacologia , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Antineoplásicos/administração & dosagem , Aspirina/administração & dosagem , Aspirina/farmacologia , Celecoxib/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Inibidores de Ciclo-Oxigenase 2/administração & dosagem , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase/administração & dosagem , Inibidores de Ciclo-Oxigenase/farmacologia , Resistencia a Medicamentos Antineoplásicos , Ácido Eicosapentaenoico/administração & dosagem , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cancers (Basel) ; 12(10)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007872

RESUMO

Cholangiocarcinoma (CCA) is a rare disease with poor outcomes and limited research efforts into novel treatment options. A systematic review of CCA biomarkers was undertaken to identify promising biomarkers that may be used for theranosis (therapy and diagnosis). MEDLINE/EMBASE databases (1996-2019) were systematically searched using two strategies to identify biomarker studies of CCA. The PANTHER Go-Slim classification system and STRING network version 11.0 were used to interrogate the identified biomarkers. The TArget Selection Criteria for Theranosis (TASC-T) score was used to rank identified proteins as potential targetable biomarkers for theranosis. The following proteins scored the highest, CA9, CLDN18, TNC, MMP9, and EGFR, and they were evaluated in detail. None of these biomarkers had high sensitivity or specificity for CCA but have potential for theranosis. This review is unique in that it describes the process of selecting suitable markers for theranosis, which is also applicable to other diseases. This has highlighted existing validated markers of CCA that can be used for active tumor targeting for the future development of targeted theranostic delivery systems. It also emphasizes the relevance of bioinformatics in aiding the search for validated biomarkers that could be repurposed for theranosis.

13.
Small ; 16(46): e2003793, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33103323

RESUMO

The generation of effective and safe nanoagents for biological applications requires their physicochemical characteristics to be tunable, and their cellular interactions to be well characterized. Here, the controlled synthesis is developed for preparing high-aspect ratio gold nanotubes (AuNTs) with tailorable wall thickness, microstructure, composition, and optical characteristics. The modulation of optical properties generates AuNTs with strong near infrared absorption. Surface modification enhances dispersibility of AuNTs in aqueous media and results in low cytotoxicity. The uptake and trafficking of these AuNTs by primary mesothelioma cells demonstrate their accumulation in a perinuclear distribution where they are confined initially in membrane-bound vesicles from which they ultimately escape to the cytosol. This represents the first study of the cellular interactions of high-aspect ratio 1D metal nanomaterials and will facilitate the rational design of plasmonic nanoconstructs as cytosolic nanoagents for potential diagnosis and therapeutic applications.


Assuntos
Mesotelioma , Nanoestruturas , Nanotubos , Citosol , Ouro , Humanos , Mesotelioma/tratamento farmacológico
14.
Theranostics ; 10(24): 10973-10992, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042265

RESUMO

Most cancer patients receive chemotherapy at some stage of their treatment which makes improving the efficacy of cytotoxic drugs an ongoing and important goal. Despite large numbers of potent anti-cancer agents being developed, a major obstacle to clinical translation remains the inability to deliver therapeutic doses to a tumor without causing intolerable side effects. To address this problem, there has been intense interest in nanoformulations and targeted delivery to improve cancer outcomes. The aim of this work was to demonstrate how vascular endothelial growth factor receptor 2 (VEGFR2)-targeted, ultrasound-triggered delivery with therapeutic microbubbles (thMBs) could improve the therapeutic range of cytotoxic drugs. Methods: Using a microfluidic microbubble production platform, we generated thMBs comprising VEGFR2-targeted microbubbles with attached liposomal payloads for localised ultrasound-triggered delivery of irinotecan and SN38 in mouse models of colorectal cancer. Intravenous injection into tumor-bearing mice was used to examine targeting efficiency and tumor pharmacodynamics. High-frequency ultrasound and bioluminescent imaging were used to visualise microbubbles in real-time. Tandem mass spectrometry (LC-MS/MS) was used to quantitate intratumoral drug delivery and tissue biodistribution. Finally, 89Zr PET radiotracing was used to compare biodistribution and tumor accumulation of ultrasound-triggered SN38 thMBs with VEGFR2-targeted SN38 liposomes alone. Results: ThMBs specifically bound VEGFR2 in vitro and significantly improved tumor responses to low dose irinotecan and SN38 in human colorectal cancer xenografts. An ultrasound trigger was essential to achieve the selective effects of thMBs as without it, thMBs failed to extend intratumoral drug delivery or demonstrate enhanced tumor responses. Sensitive LC-MS/MS quantification of drugs and their metabolites demonstrated that thMBs extended drug exposure in tumors but limited exposure in healthy tissues, not exposed to ultrasound, by persistent encapsulation of drug prior to elimination. 89Zr PET radiotracing showed that the percentage injected dose in tumors achieved with thMBs was twice that of VEGFR2-targeted SN38 liposomes alone. Conclusions: thMBs provide a generic platform for the targeted, ultrasound-triggered delivery of cytotoxic drugs by enhancing tumor responses to low dose drug delivery via combined effects on circulation, tumor drug accumulation and exposure and altered metabolism in normal tissues.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Microbolhas/uso terapêutico , Ondas Ultrassônicas , Antineoplásicos/farmacocinética , Disponibilidade Biológica , Linhagem Celular Tumoral , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/patologia , Terapia Combinada/métodos , Feminino , Humanos , Irinotecano , Técnicas Analíticas Microfluídicas , Tomografia por Emissão de Pósitrons , Distribuição Tecidual/efeitos da radiação , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Control Release ; 326: 13-24, 2020 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-32562855

RESUMO

Drug penetration into solid tumours remains a major challenge in the effective treatment of cancer. Microbubble (MB) mediated sonoporation offers a potential solution to this by enhancing the uptake of drugs into cells. Additionally, in using an ultrasound (US) trigger, drug delivery can be localised to the tumour, thus reducing the off-site toxicity associated with systemic delivery. The majority of in vitro studies involving the observation of MB-enhanced drug efficacy have been conducted on 2D monolayer cell cultures, which are known to be poor models for in vivo tumours. 3D spheroid cultures allow for the production of multicellular cultures complete with extracellular matrix (ECM) components. These cultures effectively recreate many of the physiological features of the tumour microenvironment and have been shown to be far superior to previous 2D monolayer models. However, spheroids are typically handled in well-plates in which the fluid environment is static, limiting the physiological relevance of the model. The combination of 3D cultures and microfluidics would allow for the production of a dynamic system in which spheroids are subjected to in vivo like fluid flow and shear stresses. This study presents a microfluidic device containing an array of spheroid traps, into which multiple pre-grown colorectal cancer (CRC) spheroids were loaded. Reservoirs interfaced with the chip use hydrostatic pressure to passively drive flow through the system and subject spheroids to capillary like flow velocities. The use of reservoirs also enabled multiple chips to be run in parallel, allowing for the screening of multiple therapeutic treatments (n = 690 total spheroids analysed). This microfluidic platform was used to investigate MB enhanced drug delivery and showed that co-delivery of 3 µM doxorubicin (DOX) + MB + US reduced spheroid viability to 48 ± 2%, compared to 75 ± 5% observed with 3 µM DOX alone. Delivery of drug loaded MBs (DLMBs), in which DOX-loaded liposomes (DOX-LS) were conjugated to MBs, reduced spheroid viability to 62 ± 3%, a decrease compared to the 75 ± 3% viability observed with DOX-LS in the absence of MBs + US.


Assuntos
Microbolhas , Neoplasias , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Humanos , Microfluídica , Neoplasias/tratamento farmacológico , Esferoides Celulares , Microambiente Tumoral
16.
ACS Appl Mater Interfaces ; 12(26): 29085-29093, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32501014

RESUMO

Because of their size (1-10 µm), microbubble-based drug delivery agents suffer from confinement to the vasculature, limiting tumor penetration and potentially reducing the drug efficacy. Nanobubbles (NBs) have emerged as promising candidates for ultrasound-triggered drug delivery because of their small size, allowing drug delivery complexes to take advantage of the enhanced permeability and retention effect. In this study, we describe a simple method for production of nested-nanobubbles (Nested-NBs) by encapsulation of NBs (∼100 nm) within drug-loaded liposomes. This method combines the efficient and well-established drug-loading capabilities of liposomes while utilizing NBs as an acoustic trigger for drug release. Encapsulation was characterized using transmission electron microscopy with an encapsulation efficiency of 22 ± 2%. Nested-NBs demonstrated echogenicity using diagnostic B-mode imaging, and acoustic emissions were monitored during high-intensity focused ultrasound (HIFU) in addition to monitoring of model drug release. Results showed that although the encapsulated NBs were destroyed by pulsed HIFU [peak negative pressure (PNP) 1.54-4.83 MPa], signified by loss of echogenicity and detection of inertial cavitation, no model drug release was observed. Changing modality to continuous wave (CW) HIFU produced release across a range of PNPs (2.01-3.90 MPa), likely because of a synergistic effect of mechanical and increased thermal stimuli. Because of this, we predict that our NBs contain a mixed population of both gaseous and liquid core particles, which upon CW HIFU undergo rapid phase conversion, triggering liposomal drug release. This hypothesis was investigated using previously described models to predict the existence of droplets and their phase change potential and the ability of this phase change to induce liposomal drug release.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Lipossomos/química , Microbolhas , Animais , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Humanos
17.
Cell Oncol (Dordr) ; 43(5): 835-845, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32468445

RESUMO

PURPOSE: The current treatment outcomes in cholangiocarcinoma are poor with cure afforded only by surgical extirpation. The efficacy of targeting the tumoural endothelial marker CD105 in cholangiocarcinoma, as a basis for potential microbubble-based treatment, is unknown and was explored here. METHODS: Tissue expression of CD105 was quantified using immunohistochemistry in 54 perihilar cholangiocarcinoma samples from patients who underwent resection in a single centre over a ten-year period, and analysed against clinicopathological data. In vitro flow assays using microbubbles functionalised with CD105 antibody were conducted to ascertain specificity of binding to murine SVR endothelial cells. Finally, CD105-microbubbles were intravenously administered to 10 Balb/c nude mice bearing heterotopic subcutaneous human extrahepatic cholangiocarcinoma (TFK-1 and EGI-1) xenografts after which in vivo binding was assessed following contrast-enhanced destruction replenishment ultrasound application. RESULTS: Though not significantly associated with any examined clinicopathological variable, we found that higher CD105 expression was independently associated with poorer patient survival (median 12 vs 31 months; p = 0.002). In vitro studies revealed significant binding of CD105-microbubbles to SVR endothelial cells in comparison to isotype control (p = 0.01), as well as in vivo to TFK-1 (p = 0.02) and EGI-1 (p = 0.04) mouse xenograft vasculature. CONCLUSION: Our results indicate that CD105 is a biomarker eminently suitable for cholangiocarcinoma targeting using functionalised microbubbles.


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Biomarcadores Tumorais/metabolismo , Colangiocarcinoma/metabolismo , Endoglina/metabolismo , Células Endoteliais/metabolismo , Microbolhas , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Neoplasias dos Ductos Biliares/diagnóstico por imagem , Neoplasias dos Ductos Biliares/patologia , Capilares/patologia , Linhagem Celular Tumoral , Colangiocarcinoma/diagnóstico por imagem , Colangiocarcinoma/patologia , Células Endoteliais/patologia , Feminino , Humanos , Masculino , Camundongos , Microvasos/patologia , Pessoa de Meia-Idade , Análise Multivariada , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Prognóstico , Ensaios Antitumorais Modelo de Xenoenxerto
18.
ACS Appl Bio Mater ; 3(11): 7840-7848, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-35019524

RESUMO

Microbubbles (MBs) are widely used as contrast enhancement agents for ultrasound imaging and have the potential to enhance therapeutic delivery to diseases such as cancer. Yet, they are only stable in solution for a few hours to days after production, which limits their potential application. Freeze-drying provides long-term storage, ease of transport, and consistency in structure and composition, thereby facilitating their use in clinical settings. Therapeutic microbubbles (thMBs) consisting of MBs with attached therapeutic payload potentially face even greater issues for production, stability, and well-defined drug delivery. The ability to freeze-dry thMBs represents an important step for their translation to the clinic. Here, we show that it is possible to freeze-dry and reconstitute thMBs that consist of lipid-coated MBs with an attached liposomal payload. The thMBs were produced microfluidically, and the liposomes contained either calcein, as a model drug, or gemcitabine. The results show that drug-loaded thMBs can be freeze-dried and stored for at least 6 months. Upon reconstitution, they maintain their structural integrity and drug loading. Furthermore, we show that their in vivo echogenicity is maintained post-freeze-drying. Depending on the gas used in the original bubbles, we also demonstrate that the approach provides a method to exchange the gas core to allow the formulation of thMBs with different gases for combination therapies or improved drug efficacy. Importantly, this work provides an important route for the facile off-site production of thMBs that can be reformulated at the point of care.

19.
Anticancer Res ; 38(12): 6737-6744, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30504384

RESUMO

BACKGROUND/AIM: Platforms using valid molecular targets can provide concurrent diagnostic and treatment (theragnostic) options in perihilar cholangiocarcinoma (PHC). Neutrophil gelatinase-associated lipocalin (NGAL) is a biomarker in the biliary secretome of PHC. Its potential as a theragnostic target and its prognostic significance in this cancer was, therefore, explored. MATERIALS AND METHODS: In-vitro studies were used to determine NGAL localization in several cholangiocarcinoma cell lines. Tissue expression of NGAL was quantified in PHC resection cases from 2000-2010 by immunohistochemistry. RESULTS: NGAL was expressed in the majority of tested cell lines and localized to their membranes. Tissues from 54 patients underwent NGAL immunohistochemistry. Median tumoral NGAL expression was significantly higher than that in matched liver controls (p<0.001). Higher NGAL tumor expression was associated with nodal metastasis (p=0.021), although no significant association with survival was observed. CONCLUSION: The expression and localization of NGAL in PHC make it a valid candidate biomarker for exploitation in theragnostic platforms.


Assuntos
Neoplasias dos Ductos Biliares/diagnóstico , Biomarcadores Tumorais , Tumor de Klatskin/diagnóstico , Lipocalina-2/fisiologia , Recidiva Local de Neoplasia/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Imuno-Histoquímica , Tumor de Klatskin/metabolismo , Tumor de Klatskin/patologia , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Prognóstico
20.
Sci Rep ; 7(1): 6074, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28729694

RESUMO

Genetic deletion or pharmacological inhibition of cyclooxygenase (COX)-2 abrogates intestinal adenoma development at early stages of colorectal carcinogenesis. COX-2 is localised to stromal cells (predominantly macrophages) in human and mouse intestinal adenomas. Therefore, we tested the hypothesis that paracrine Cox-2-mediated signalling from macrophages drives adenoma growth and progression in vivo in the Apc Min/+ mouse model of intestinal tumorigenesis. Using a transgenic C57Bl/6 mouse model of Cox-2 over-expression driven by the chicken lysozyme locus (cLys-Cox-2), which directs integration site-independent, copy number-dependent transgene expression restricted to macrophages, we demonstrated that stromal macrophage Cox-2 in colorectal (but not small intestinal) adenomas from cLys-Cox-2 x Apc Min/+ mice was associated with significantly increased tumour size (P = 0.025) and multiplicity (P = 0.025), compared with control Apc Min/+ mice. Transgenic macrophage Cox-2 expression was associated with increased dysplasia, epithelial cell Cox-2 expression and submucosal tumour invasion, as well as increased nuclear ß-catenin translocation in dysplastic epithelial cells. In vitro studies confirmed that paracrine macrophage Cox-2 signalling drives catenin-related transcription in intestinal epithelial cells. Paracrine macrophage Cox-2 activity drives growth and progression of Apc Min/+ mouse colonic adenomas, linked to increased epithelial cell ß-catenin dysregulation. Stromal cell (macrophage) gene regulation and signalling represent valid targets for chemoprevention of colorectal cancer.


Assuntos
Adenoma/metabolismo , Transformação Celular Neoplásica/metabolismo , Neoplasias Colorretais/metabolismo , Ciclo-Oxigenase 2/metabolismo , Macrófagos/metabolismo , Comunicação Parácrina , Adenoma/genética , Adenoma/patologia , Animais , Transformação Celular Neoplásica/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Ciclo-Oxigenase 2/genética , Modelos Animais de Doenças , Progressão da Doença , Expressão Gênica , Genes APC , Loci Gênicos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA