Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Clin Med ; 13(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38541795

RESUMO

Background: Abdominal aortic aneurysm (AAA) is a chronic inflammatory disease that poses several challenges. Given the increasing evidence that AAA patients are more likely to develop cancer and the importance of its early detection, we strived to develop a non-invasive tool based on serial FDG-PET/CT scan examinations to identify, among AAA patients, those at risk of cancer. Methods: Between 2006 and 2011 we recruited 149 AAA patients, free of cancer at baseline, and followed them until the end of 2021. All patients underwent an FDG-PET/CT scan at inclusion and possibly more scans during follow-up. At each medical imaging examination, the aneurysmal FDG uptake was recorded. Patients were stratified based on their aortic wall PET status (negative/positive). Any occurrence of cancer was reported. A Cox regression analysis and competing-risk modeling were applied to the data. Results: The proportion of AAA patients who developed cancer was 31.5% (mean time to diagnosis was 5.7 ± 3.4 years) and the death rate was 59%. A difference in cancer incidence between PET+ and PET- patients was detected (46.8% vs. 27.3%; HR = 1.96, 95%CI: 1.07-3.57, p = 0.028). Moreover, AAA patients undergoing surgical treatment had a lower risk of cancer than unoperated patients (28% vs. 50%; HR = 0.41, 95%CI: 0.21-0.80, p = 0.009). Conclusions: In AAA patients, diagnostic imaging with an FDG-PET/CT scan can help identify those patients at a higher risk of developing cancer. Moreover, the higher cancer risk in non-surgically treated patients calls for further analysis of associations between aneurysm growth and malignant disease.

2.
FASEB J ; 37(11): e23237, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37819632

RESUMO

Adamalysins, a family of metalloproteinases containing a disintegrin and metalloproteinases (ADAMs) and ADAM with thrombospondin motifs (ADAMTSs), belong to the matrisome and play important roles in various biological and pathological processes, such as development, immunity and cancer. Using a liver cancer dataset from the International Cancer Genome Consortium, we developed an extensive in silico screening that identified a cluster of adamalysins co-expressed in livers from patients with hepatocellular carcinoma (HCC). Within this cluster, ADAMTS12 expression was highly associated with recurrence risk and poorly differentiated HCC signatures. We showed that ADAMTS12 was expressed in the stromal cells of the tumor and adjacent fibrotic tissues of HCC patients, and more specifically in activated stellate cells. Using a mouse model of carbon tetrachloride-induced liver injury, we showed that Adamts12 was strongly and transiently expressed after a 24 h acute treatment, and that fibrosis was exacerbated in Adamts12-null mice submitted to carbon tetrachloride-induced chronic liver injury. Using the HSC-derived LX-2 cell line, we showed that silencing of ADAMTS12 resulted in profound changes of the gene expression program. In particular, genes previously reported to be induced upon HSC activation, such as PAI-1, were mostly down-regulated following ADAMTS12 knock-down. The phenotype of these cells was changed to a less differentiated state, showing an altered actin network and decreased nuclear spreading. These phenotypic changes, together with the down-regulation of PAI-1, were offset by TGF-ß treatment. The present study thus identifies ADAMTS12 as a modulator of HSC differentiation, and a new player in chronic liver disease.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Cirrose Hepática/metabolismo , Carcinoma Hepatocelular/metabolismo , Tetracloreto de Carbono/toxicidade , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Neoplasias Hepáticas/metabolismo , Fígado/metabolismo , Metaloproteases/metabolismo , Células Estreladas do Fígado/metabolismo , Proteínas ADAMTS/genética , Proteínas ADAMTS/metabolismo
3.
Cancer Lett ; 569: 216306, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37442366

RESUMO

Bidirectional interactions between cancer cells and their microenvironment govern tumor progression. Among the stromal cells in this microenvironment, adipocytes have been reported to upregulate cancer cell migration and invasion by producing fatty acids. Conversely, cancer cells alter adipocyte phenotype notably via increased lipolysis. We aimed to identify the mechanisms through which cancer cells trigger adipocyte lipolysis and evaluate the functional consequences on cancer progression. Here, we show that cancer cell-induced acidification of the extracellular medium strongly promotes preadipocyte lipolysis through a mechanism that does not involve lipophagy but requires adipose triglyceride lipase (ATGL) activity. This increased lipolysis is triggered mainly by attenuation of the G0/G1 switch gene 2 (G0S2)-induced inhibition of ATGL. G0S2-mediated regulation in preadipocytes affects their communication with breast cancer cells, modifying the phenotype of the cancer cells and increasing their resistance to chemotherapeutic agents in vitro. Furthermore, we demonstrate that the adipocyte-specific overexpression of G0S2 impairs mammary tumor growth and lung metastasis formation in vivo. Our results highlight the importance of acidosis in cancer cell-adipocyte crosstalk and identify G0S2 as the main regulator of cancer-induced lipolysis, regulating tumor establishment and spreading.


Assuntos
Proteínas de Ciclo Celular , Neoplasias , Proteínas de Ciclo Celular/metabolismo , Lipase/genética , Lipase/metabolismo , Adipócitos/metabolismo , Lipólise , Fenômenos Fisiológicos Celulares
4.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835422

RESUMO

RhoGDI2 is a guanine nucleotide dissociation inhibitor (GDI) specific for the Rho family of small GTPases. It is highly expressed in hematopoietic cells but is also present in a large array of other cell types. RhoGDI2 has been implicated in multiple human cancers and immunity regulation, where it can display a dual role. Despite its involvement in various biological processes, we still do not have a clear understanding of its mechanistic functions. This review sheds a light on the dual opposite role of RhoGDI2 in cancer, highlights its underappreciated role in immunity and proposes ways to explain its intricate regulatory functions.


Assuntos
Imunidade , Neoplasias , Inibidor beta de Dissociação do Nucleotídeo Guanina rho , Humanos , Neoplasias/metabolismo , Inibidor beta de Dissociação do Nucleotídeo Guanina rho/metabolismo
5.
Nucleic Acids Res ; 50(22): 12768-12789, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36477312

RESUMO

Genotoxic agents, that are used in cancer therapy, elicit the reprogramming of the transcriptome of cancer cells. These changes reflect the cellular response to stress and underlie some of the mechanisms leading to drug resistance. Here, we profiled genome-wide changes in pre-mRNA splicing induced by cisplatin in breast cancer cells. Among the set of cisplatin-induced alternative splicing events we focused on COASY, a gene encoding a mitochondrial enzyme involved in coenzyme A biosynthesis. Treatment with cisplatin induces the production of a short isoform of COASY lacking exons 4 and 5, whose depletion impedes mitochondrial function and decreases sensitivity to cisplatin. We identified RBM39 as a major effector of the cisplatin-induced effect on COASY splicing. RBM39 also controls a genome-wide set of alternative splicing events partially overlapping with the cisplatin-mediated ones. Unexpectedly, inactivation of RBM39 in response to cisplatin involves its interaction with the AP-1 family transcription factor c-Jun that prevents RBM39 binding to pre-mRNA. Our findings therefore uncover a novel cisplatin-induced interaction between a splicing regulator and a transcription factor that has a global impact on alternative splicing and contributes to drug resistance.


Assuntos
Processamento Alternativo , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Proteínas de Ligação a RNA , Fatores de Transcrição , Processamento Alternativo/genética , Cisplatino/farmacologia , Cisplatino/metabolismo , Dano ao DNA , Proteínas Nucleares/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Humanos , Animais
6.
Int J Mol Sci ; 22(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922580

RESUMO

The rewiring of lipid metabolism is a major adaptation observed in cancer, and it is generally associated with the increased aggressiveness of cancer cells. Targeting lipid metabolism is therefore an appealing therapeutic strategy, but it requires a better understanding of the specific roles played by the main enzymes involved in lipid biosynthesis. Lipin-1 is a central regulator of lipid homeostasis, acting either as an enzyme or as a co-regulator of transcription. In spite of its important functions it is only recently that several groups have highlighted its role in cancer. Here, we will review the most recent research describing the role of lipin-1 in tumor progression when expressed by cancer cells or cells of the tumor microenvironment. The interest of its inhibition as an adjuvant therapy to amplify the effects of anti-cancer therapies will be also illustrated.


Assuntos
Antineoplásicos/uso terapêutico , Homeostase , Metabolismo dos Lipídeos , Neoplasias/patologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Compostos Orgânicos/metabolismo
7.
Liver Int ; 40(8): 2021-2033, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32306499

RESUMO

BACKGROUND & AIMS: Activation of hepatic stellate cells (HSC) is a critical process involved in liver fibrosis. Several miRNAs are implicated in gene regulation during this process but their exact and respective contribution is still incompletely understood. Here we propose an integrative approach of miRNA-regulatory networks to predict new targets. METHODS: miRNA regulatory networks in activated HSCs were built using lists of validated miRNAs and the CyTargetLinker tool. The resulting graphs were filtered according to public transcriptomic data and the reduced graphs were analysed through GO annotation. A miRNA network regulating the expression of TIMP3 was further studied in human liver samples, isolated hepatic cells and mouse model of liver fibrosis. RESULTS: Within the up-regulated miRNAs, we identified a subnetwork of five miRNAs (miR-21-5p, miR-222-3p, miR-221-3p miR-181b-5p and miR-17-5p) that target TIMP3. We demonstrated that TIMP3 expression is inversely associated with inflammatory activity and IL1-ß expression in vivo. We further showed that IL1-ß inhibits TIMP3 expression in HSC-derived LX-2 cells. Using data from The Cancer Genome Atlas (TCGA), we showed that, in hepatocellular carcinoma (HCC), TIMP3 expression is associated with survival (P < .001), while miR-221 (P < .05), miR-222 (P < .01) and miR-181b (P < .01) are markers for a poor prognosis. CONCLUSIONS: Several miRNAs targeting TIMP3 are up-regulated in activated HSCs and down-regulation of TIMP3 expression is associated with inflammatory activity in liver fibrosis and poor prognosis in HCC. The regulatory network including specific miRNAs and TIMP3 is therefore central for the evolution of chronic liver disease.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Carcinoma Hepatocelular/genética , Células Estreladas do Fígado , Humanos , Cirrose Hepática/genética , Neoplasias Hepáticas/genética , MicroRNAs/genética , Inibidor Tecidual de Metaloproteinase-3/genética
8.
Platelets ; 31(2): 221-225, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30915890

RESUMO

Platelet-rich plasma (PRP) is increasingly used in the treatment of musculoskeletal diseases. Its preservation by freezing it for the realization of multiple injections in clinical use has never been discussed. Calcaneal tendons of rats were surgically sectioned. Platelet concentration of the PRP was 2.5 x 106/µl with autologous plasma of rats. Frozen-thawed PRP was prepared by performing two cycles of freezing and thawing on PRP aliquots. Both platelet preparations were injected in the lesion. Biomechanical and histological evaluations were carried out after 7, 20 or 40 days post surgery. After 7 and 40 days, no significant difference was observed between the PRP and the frozen-thawed PRP group. There is however a difference 20 days after surgery: the ultimate tensile strength (UTS) was greater in the fresh PRP group. No obvious difference with histological aspect was observed between the two groups. In conclusion, fresh PRP and frozen-thawed PRP injections can lead to similar results in the healing process of section calcaneal tendons of rats. Improvements with fresh PRP are slight. PRP could thus be frozen to be preserved if multiple injections are needed (e.g. osteoarthritis).


Assuntos
Plasma Rico em Plaquetas/química , Tendões/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
9.
Biomacromolecules ; 21(2): 349-355, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31687811

RESUMO

In the recent decades, biodegradable and biocompatible polyphosphoesters (PPEs) have gained wide attention in the biomedical field as relevant substitutes for conventional aliphatic polyesters. These amorphous materials of low glass transition temperature offer promise for the design of soft scaffolds for tissue engineering. Advantageously, the easy variation of the nature of the lateral pendant groups of PPEs allows the insertion of pendent unsaturations valuable for their further cross-linking. In addition, varying the length of the pendent alkyl chains allows tuning their hydrophilicity. The present work aims at synthesizing PPE networks of well-defined hydrophilicity and mechanical properties. More precisely, we aimed at preparing degradable materials exhibiting identical hydrophilicity but different mechanical properties and vice versa. For that purpose, PPE copolymers were synthesized by ring-opening copolymerization of cyclic phosphate monomers bearing different pendent groups (e.g., methyl, butenyl, and butyl). After UV irradiation, a stable and well-defined cross-linked material is obtained with the mechanical property of the corresponding polymer films controlled by the composition of the starting PPE copolymer. The results demonstrate that cross-linking density could be correlated with the mechanical properties, swelling behavior, and degradation rate of the polymers network. The polymers were compatible to human skin fibroblast cells and did not exhibit significant cytotoxicity up to 0.5 mg mL-1. In addition, degradation products appeared nontoxic to skin fibroblast cells and showed their potential as promising scaffolds for tissue engineering.


Assuntos
Materiais Biocompatíveis/química , Polímeros/química , Alicerces Teciduais/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/toxicidade , Células Cultivadas , Ésteres/química , Fibroblastos/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Polimerização , Polímeros/síntese química , Polímeros/metabolismo , Polímeros/toxicidade , Reologia , Engenharia Tecidual/métodos , Raios Ultravioleta
10.
J Mol Cell Cardiol ; 135: 149-159, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31442470

RESUMO

The mitral valve is a complex multilayered structure populated by fibroblast-like cells, valvular interstitial cells (VIC) which are embedded in an extracellular matrix (ECM) scaffold and are submitted to the mechanical deformations affecting valve at each heartbeat, for an average of 40 million times per year. Myxomatous mitral valve (MMV) is the most frequent heart valve disease characterized by disruption of several valvular structures due to alterations of their ECM preventing the complete closure of the valve resulting in symptoms of prolapse and regurgitation. VIC and their ECM exhibit reciprocal dynamic processes between the mechanical signals issued from the ECM and the modulation of VIC phenotype responsible for ECM homeostasis of the valve. Abnormal perception and responsiveness of VIC to mechanical stress may induce an inappropriate adaptative remodeling of the valve progressively leading to MMV. To investigate the response of human VIC to mechanical strain and identify the molecular mechanisms of mechano-transduction in these cells, a cyclic equibiaxial elongation of 14% at the cardiac frequency of 1.16 Hz was applied to VIC by using a Flexercell-4000 T™ apparatus for increasing time (from 1 h to 8 h). We showed that cyclic stretch induces an early (1 h) and transient over-expression of TGFß2 and αSMA. CTGF, a profibrotic growth factor promoting the synthesis of ECM components, was strongly induced after 1 and 2 h of stretching and still upregulated at 8 h. The mechanical stress-induced CTGF up-regulation was dependent on RhoC, but not RhoA, as demonstrated by siRNA-mediated silencing approaches, and further supported by evidencing RhoC activation upon cell stretching and suppression of cell response by pharmacological inhibition of the effector ROCK1/2. It was also dependent on the MEK/Erk1/2 pathway which was activated by mechanical stress independently of RhoC and ROCK. Finally, mechanical stretching induced the nuclear translocation of myocardin related transcription factor-A (MRTF-A) which forms a transcriptional complex with SRF to promote the expression of target genes, notably CTGF. Treatment of stretched cultures with inhibitors of the identified pathways (ROCK1/2, MEK/Erk1/2, MRTF-A translocation) blocked CTGF overexpression and abrogated the increased MRTF-A nuclear translocation. CTGF is up-regulated in many pathological processes involving mechanically challenged organs, promotes ECM accumulation and is considered as a hallmark of fibrotic diseases. Pharmacological targeting of MRTF-A by newly developed inhibitors may represent a relevant therapy for MMV.


Assuntos
Estenose da Valva Aórtica/genética , Calcinose/genética , Fibrose/genética , Valva Mitral/metabolismo , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Estenose da Valva Aórtica/patologia , Calcinose/patologia , Fibrose/patologia , Humanos , Sistema de Sinalização das MAP Quinases/genética , Valva Mitral/patologia , Estresse Mecânico , Transativadores/genética , Quinases Associadas a rho/genética , Proteína rhoA de Ligação ao GTP/genética
11.
Breast Cancer Res ; 21(1): 11, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674353

RESUMO

BACKGROUND: Elevated aerobic glycolysis rate is a biochemical alteration associated with malignant transformation and cancer progression. This metabolic shift unavoidably generates methylglyoxal (MG), a potent inducer of dicarbonyl stress through the formation of advanced glycation end products (AGEs). We have previously shown that the silencing of glyoxalase 1 (GLO1), the main MG detoxifying enzyme, generates endogenous dicarbonyl stress resulting in enhanced growth and metastasis in vivo. However, the molecular mechanisms through which MG stress promotes metastasis development remain to be unveiled. METHODS: In this study, we used RNA sequencing analysis to investigate gene-expression profiling of GLO1-depleted breast cancer cells and we validated the regulated expression of selected genes of interest by RT-qPCR. Using in vitro and in vivo assays, we demonstrated the acquisition of a pro-metastatic phenotype related to dicarbonyl stress in MDA-MB-231, MDA-MB-468 and MCF7 breast cancer cellular models. Hyperactivation of MEK/ERK/SMAD1 pathway was evidenced using western blotting upon endogenous MG stress and exogenous MG treatment conditions. MEK and SMAD1 regulation of MG pro-metastatic signature genes in breast cancer cells was demonstrated by RT-qPCR. RESULTS: High-throughput transcriptome profiling of GLO1-depleted breast cancer cells highlighted a pro-metastatic signature that establishes novel connections between MG dicarbonyl stress, extracellular matrix (ECM) remodeling by neoplastic cells and enhanced cell migration. Mechanistically, we showed that these metastasis-related processes are functionally linked to MEK/ERK/SMAD1 cascade activation in breast cancer cells. We showed that sustained MEK/ERK activation in GLO1-depleted cells notably occurred through the down-regulation of the expression of dual specificity phosphatases in MG-stressed breast cancer cells. The use of carnosine and aminoguanidine, two potent MG scavengers, reversed MG stress effects in in vitro and in vivo experimental settings. CONCLUSIONS: These results uncover for the first time the key role of MG dicarbonyl stress in the induction of ECM remodeling and the activation of migratory signaling pathways, both in favor of enhanced metastatic dissemination of breast cancer cells. Importantly, the efficient inhibition of mitogen-activated protein kinase (MAPK) signaling using MG scavengers further emphasizes the need to investigate their therapeutic potential across different malignancies.


Assuntos
Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Sistema de Sinalização das MAP Quinases/genética , Aldeído Pirúvico/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação para Baixo , Fosfatases de Especificidade Dupla/metabolismo , Feminino , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Glicólise/genética , Humanos , Lactoilglutationa Liase/genética , Lactoilglutationa Liase/metabolismo , Camundongos , RNA Interferente Pequeno/metabolismo , Proteína Smad1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Sci Rep ; 8(1): 7050, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29728578

RESUMO

Propranolol, a widely used non-selective beta-adrenergic receptor blocker, was recently shown to display anticancer properties. Its potential to synergize with certain drugs has been also outlined. However, it is necessary to take into account all the properties of propranolol to select a drug that could be efficiently combined with. Propranolol was reported to block the late phase of autophagy. Hence, we hypothesized that in condition enhancing autophagy flux, cancer cells should be especially sensitive to propranolol. 2DG, a glycolysis inhibitor, is an anti-tumor agent having limited effect in monotherapy notably due to induction of pro-survival autophagy. Here, we report that treatment of cancer cells with propranolol in combination with the glycolysis inhibitor 2DG induced a massive accumulation of autophagosome due to autophagy blockade. The propranolol +2DG treatment efficiently prevents prostate cancer cell proliferation, induces cell apoptosis, alters mitochondrial morphology, inhibits mitochondrial bioenergetics and aggravates ER stress in vitro and also suppresses tumor growth in vivo. Our study underlines for the first time the interest to take advantage of the ability of propranolol to inhibit autophagy to design new anti-cancer therapies.


Assuntos
Metabolismo dos Carboidratos/efeitos dos fármacos , Glucose/metabolismo , Propranolol/farmacologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Oncotarget ; 9(12): 10665-10680, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29535834

RESUMO

The identification of diagnostic and prognostic biomarkers from early lesions, measurable in liquid biopsies remains a major challenge, particularly in oncology. Fresh human material of high quality is required for biomarker discovery but is often not available when it is totally required for clinical pathology investigation. Hence, all OMICs studies are done on residual and less clinically relevant biological samples. Here after, we present an innovative, simple, and non-destructive, procedure named EXPEL that uses rapid, pressure-assisted, interstitial fluid extrusion, preserving the specimen for full routine clinical pathology investigation. In the meantime, the technique allows a comprehensive OMICs analysis (proteins, metabolites, miRNAs and DNA). As proof of concept, we have applied EXPEL on freshly collected human colorectal cancer and liver metastases tissues. We demonstrate that the procedure efficiently allows the extraction, within a few minutes, of a wide variety of biomolecules holding diagnostic and prognostic potential while keeping both tissue morphology and antigenicity unaltered. Our method enables, for the first time, both clinicians and scientists to explore identical clinical material regardless of its origin and size, which has a major positive impact on translation to the clinic.

14.
J Vasc Surg ; 67(2): 585-595.e3, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28431866

RESUMO

BACKGROUND: Prediction of abdominal aortic aneurysm (AAA) rupture is a challenging issue. Small noncoding microRNAs (miRNAs) are potent regulators of gene expression and are considered as valuable circulating biomarkers. Recently, [18F]fluorodeoxyglucose (FDG) uptake detected by positron emission tomography (PET) in AAA was correlated with cellular and molecular alterations involved in wall instability and its potential rupture. Our study aimed at identifying circulating miRNAs correlated with a positive PET that could help discriminate patients at high risk of rupture. METHODS: The level of 372 miRNAs was evaluated by polymerase chain reaction array in plasma from 35 AAA patients displaying no FDG uptake (A0) and 22 patients with a positive PET uptake (A+). The modulated miRNAs were validated by quantitative polymerase chain reaction and measured in aneurysmal tissues from both groups of patients. RESULTS: Six circulating miRNAs were found significantly modulated in A+ vs A0 patients. They were significantly correlated not only between them but also with the intensity of FDG uptake. Two of them correlated also with the AAA diameter. These miRNAs displayed significant discriminating power between the A+ and A0 groups as determined by receiver operating characteristic curves. Three downregulated circulating miRNAs (miR-99b-5p, miR-125b-5p, and miR-204-5p) were also significantly reduced in the aneurysmal tissue, specifically in the FDG-uptake site, compared with a negative zone in the same aneurysm and with A0 aneurysms. They were further significantly inversely correlated with the expression, at the positive uptake site, of some of their potential gene targets, most notably matrix metalloproteinase 13. CONCLUSIONS: Six miRNAs were identified as potential new circulating biomarkers of PET+ AAA. Three of these were similarly modulated in the metabolically active aneurysmal wall and might be directly involved in AAA instability.


Assuntos
Aneurisma da Aorta Abdominal/sangue , Aneurisma da Aorta Abdominal/diagnóstico por imagem , MicroRNA Circulante/sangue , Fluordesoxiglucose F18/administração & dosagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos/administração & dosagem , Transcriptoma , Idoso , Idoso de 80 Anos ou mais , Aneurisma da Aorta Abdominal/genética , Ruptura Aórtica/sangue , Ruptura Aórtica/diagnóstico , Ruptura Aórtica/genética , Bélgica , Estudos de Casos e Controles , MicroRNA Circulante/genética , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Marcadores Genéticos , Humanos , Masculino , Valor Preditivo dos Testes , Prognóstico , Fatores de Risco
15.
Int J Biochem Cell Biol ; 91(Pt B): 84-97, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28433505

RESUMO

Alternative promoter usage, alternative splicing and alternative cleavage/polyadenylation (referred here as to alternative transcription and splicing) are main instruments to diversify the transcriptome from a limited set of genes. There is a good deal of evidence that chemotherapeutic drugs affect these processes, but the therapeutic incidence of these effects is poorly documented. The scope of this study is to review the impact of chemotherapy on alternative transcription and splicing and to discuss potential implications in cancer therapy. A literature survey identified >2200 events induced by chemotherapeutic drugs. The molecular pathways involved in these regulations are briefly discussed. The GO terms associated with the alternative transcripts are mainly related to cell cycle/division, mRNA processing, DNA repair, macromolecules catabolism and chromatin. A large fraction (43%) of transcripts are also related to the new hallmarks of cancer, mostly genetic instability and replicative immortality. Finally, we ask the question of the impact of alternative transcription and splicing on drug efficacy and of the possible curative benefit of combining chemotherapy and pharmaceutical regulation of this process.


Assuntos
Processamento Alternativo/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Transcrição Gênica/efeitos dos fármacos , Animais , Humanos , Transcriptoma/efeitos dos fármacos
16.
Eur J Med Genet ; 60(4): 228-231, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28185953

RESUMO

Heterozygous mutations in the SMAD3 gene were recently described as the cause of a form of non-syndromic familial aortic thoracic aneurysm and dissection (FTAAD) transmitted as an autosomal dominant disorder and often associated with early-onset osteoarthritis. This new clinical entity, called aneurysms-osteoarthritis syndrome (AOS) or Loeys-Dietz syndrome 3 (LDS3), is characterized by aggressive arterial damages such as aneurysms, dissections and tortuosity throughout the arterial tree. We report, here, the case of a 45 year-old man presenting multiple visceral arteries and abdominal aortic aneurysms but without dissection of the thoracic aorta and without any sign of osteoarthritis. Exome-sequencing revealed a new frameshift heterozygous c.455delC (p.Pro152Hisfs*34) mutation in the SMAD3 gene. This deletion is located in the exon 3 coding for the linker region of the protein and causes a premature stop codon at positions 556-558 in the exon 4. The same mutation was found in the proband's mother and sister who had open surgery for abdominal aortic aneurysm and in one of his children who was 5 year-old and did not present aneurysm yet.


Assuntos
Aneurisma/genética , Síndrome de Loeys-Dietz/genética , Mutação , Osteoartrite/genética , Proteína Smad3/genética , Dissecção Aórtica/genética , Aneurisma da Aorta Torácica/genética , Exoma , Éxons , Saúde da Família , Feminino , Mutação da Fase de Leitura , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo
17.
PLoS One ; 11(10): e0165153, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27798666

RESUMO

Neuropilin-1 (NRP1) is a transmembrane protein acting as a co-receptor for several growth factors and interacting with other proteins such as integrins and plexins/semaphorins. It is involved in axonal development, angiogenesis and cancer progression. Its primary mRNA is subjected to alternative splicing mechanisms generating different isoforms, some of which lack the transmembrane domain and display antagonist properties to NRP1 full size (FS). NRP1 is further post-translationally modified by the addition of glycosaminoglycans (GAG) side chains through an O-glycosylation site at serine612. Here, we characterized a novel splice variant which has never been investigated, NRP1-Δ7, differing from the NRP1-FS by a deletion of 7 amino acids occurring two residues downstream of the O-glycosylation site. This short sequence contains two aspartic residues critical for efficient glycosylation. As expected, the high molecular weight products appearing as a smear in SDS-PAGE and reflecting the presence of GAG in NRP1-FS were undetectable in the NRP1-Δ7 protein. NRP1-Δ7 mRNA was found expressed at an appreciable level, between 10 and 30% of the total NRP1, by various cells lines and tissues from human and murine origin. To investigate the biological properties of this isoform, we generated prostatic (PC3) and breast (MDA-MB-231) cancer cells able to express recombinant NRP1-FS or NRP1-Δ7 in a doxycycline-inducible manner. Cells with increased expression of NRP1-Δ7 were characterized in vitro by a significant reduction of proliferation, migration and anchorage-independent growth, while NRP1-FS had the expected opposite "pro-tumoral" effects. Upon VEGF-A165 treatment, a lower internalization rate was observed for NRP1-Δ7 than for NRP1-FS. Finally, we showed that NRP1-Δ7 inhibited growth of prostatic tumors and their vascularization in vivo. This report identifies NRP1-Δ7 as a splice variant displaying anti-tumorigenic properties in vitro and in vivo, emphasizing the need to consider this isoform in future studies.


Assuntos
Processamento Alternativo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Glicosaminoglicanos/deficiência , Neuropilina-1/genética , Animais , Linhagem Celular Tumoral , Regulação da Expressão Gênica/efeitos dos fármacos , Glicosilação , Xenoenxertos , Humanos , Camundongos , Modelos Animais , Neovascularização Patológica/genética , Especificidade de Órgãos/genética , RNA Mensageiro/genética , Fator A de Crescimento do Endotélio Vascular/farmacologia
18.
Angiogenesis ; 19(1): 53-65, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26446156

RESUMO

The only documented activity of a subclass of ADAMTS proteases comprising ADAMTS2, 3 and 14 is the cleavage of the aminopropeptide of fibrillar procollagens. A limited number of in vitro studies suggested that ADAMTS3 is mainly responsible for procollagen II processing in cartilage. Here, we created an ADAMTS3 knockout mouse (Adamts3(-/-)) model to determine in vivo the actual functions of ADAMTS3. Heterozygous Adamts3(+/-) mice were viable and fertile, but their intercrosses demonstrated lethality of Adamts3(-/-) embryos after 15 days of gestation. Procollagens I, II and III processing was unaffected in these embryos. However, a massive lymphedema caused by the lack of lymphatics development, an abnormal blood vessel structure in the placenta and a progressive liver destruction were observed. These phenotypes are most probably linked to dysregulation of the VEGF-C pathways. This study is the first demonstration that an aminoprocollagen peptidase is crucial for developmental processes independently of its primary role in collagen biology and has physiological functions potentially involved in several human diseases related to angiogenesis and lymphangiogenesis.


Assuntos
Proteínas ADAM/metabolismo , Embrião de Mamíferos/metabolismo , Linfangiogênese , Neovascularização Fisiológica , Placenta/irrigação sanguínea , Proteínas ADAM/deficiência , Animais , Vasos Sanguíneos/patologia , Cartilagem/patologia , Colágeno/metabolismo , Edema/patologia , Perda do Embrião/metabolismo , Perda do Embrião/patologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Homozigoto , Imuno-Histoquímica , Fígado/embriologia , Fígado/patologia , Camundongos , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos , Placenta/patologia , Gravidez , Processamento de Proteína Pós-Traducional , Pele/patologia , Fator C de Crescimento do Endotélio Vascular/metabolismo
19.
Clin Proteomics ; 12: 25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26405438

RESUMO

BACKGROUND: Mitral regurgitation is a frequent valvular heart disease affecting around 2.5 % of the population with prevalence directly related to aging. Degeneration of mitral valve is broadly considered as a passive ongoing pathophysiological process and little is known about its physiological deregulation. The purpose of this study was to highlight new biomarkers of mitral regurgitation in order to decipher the underlying pathological mechanism as well as to allow the diagnosis and the monitoring of the disease. RESULTS: Modulation of various blood proteins expression was examined in patients suffering from different grades of mitral regurgitation (mild, moderate and severe) compared to healthy controls. To this end, several routine clinical assays and the multi analyte profile technology targeting 184 proteins were used. High-density lipoprotein, apolipoprotein-A1, haptoglobin and haptoglobin-α2 chain levels significantly decreased proportionally to the degree of mitral regurgitation when compared to controls. High-density lipoprotein and apolipoprotein-A1 levels were associated with effective regurgitant orifice area and regurgitant volume. Apolipoprotein-A1 was an independent predictor of severe mitral regurgitation. Moreover, with ordinal logistic regression, apolipoprotein-A1 remained the only independent factor associated with mitral regurgitation. In addition, myxomatous mitral valves were studied by immunocytochemistry. We observed an increase of LC3, the marker of autophagy, in myxomatous mitral valves compared with healthy mitral valves. CONCLUSION: These potential biomarkers of mitral regurgitation highlighted different cellular processes that could be modified in myxomatous degenerescence: reverse cholesterol transport, antioxidant properties and autophagy.

20.
BMC Cancer ; 15: 227, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25884497

RESUMO

BACKGROUND: Modification of splicing by chemotherapeutic drugs has usually been evaluated on a limited number of pre-mRNAs selected for their recognized or potential importance in cell proliferation or apoptosis. However, the pathways linking splicing alterations to the efficiency of cancer therapy remain unclear. METHODS: Next-generation sequencing was used to analyse the transcriptome of breast carcinoma cells treated by cisplatin. Pharmacological inhibitors, RNA interference, cells deficient in specific signalling pathways, RT-PCR and FACS analysis were used to investigate how the anti-cancer drug cisplatin affected alternative splicing and the cell death pathway. RESULTS: We identified 717 splicing events affected by cisplatin, including 245 events involving cassette exons. Gene ontology analysis indicates that cell cycle, mRNA processing and pre-mRNA splicing were the main pathways affected. Importantly, the cisplatin-induced splicing alterations required class I PI3Ks P110ß but not components such as ATM, ATR and p53 that are involved in the DNA damage response. The siRNA-mediated depletion of the splicing regulator SRSF4, but not SRSF6, expression abrogated many of the splicing alterations as well as cell death induced by cisplatin. CONCLUSION: Many of the splicing alterations induced by cisplatin are caused by SRSF4 and they contribute to apoptosis in a process requires class I PI3K.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , Precursores de RNA/genética , Splicing de RNA/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular Tumoral , Biologia Computacional , Dano ao DNA , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Fatores de Processamento de Serina-Arginina , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA