Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transfus Med Hemother ; 50(3): 198-207, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37408648

RESUMO

Background: Omics technologies represent a new analytical approach that allows a full cellular readout through the simultaneous analysis of thousands of molecules. The application of such technologies represents a flourishing field of research in human medicine, especially in transfusion medicine, while their application in veterinary medicine still needs to be developed. Summary: Omics technologies, especially proteomics, metabolomics, and lipidomics, are currently applied in several fields of human medicine. In transfusion medicine, the creation and integration of multiomics datasets have uncovered intricate molecular pathways occurring within blood bags during storage. In particular, the research has been directed toward the study of storage lesions (SLs), i.e., those biochemical and structural changes that red blood cells (RBCs) undergo during hypothermic storage, their causes, and the development of new strategies to prevent them. However, due to their challenges to perform and high costs, these technologies are hardly accessible to veterinary research, where their application dates back only to the last few years and thus a great deal of progress still needs to be made. As regards veterinary medicine, there are only a few studies that have focused mainly on fields such as oncology, nutrition, cardiology, and nephrology. Other studies have suggested omics datasets that provide important insights for future comparative investigations between human and nonhuman species. Regarding the study of storage lesions and, more generally, the veterinary transfusion field, there is a marked lack of available omics data and results with relevance for clinical practice. Key Messages: The use of omics technologies in human medicine is well established and has led to promising results in blood transfusion and related practices knowledge. Transfusion practice is a burgeoning field in veterinary medicine, but, to date, there are no species-specific procedures and techniques for the collection and storage of blood units and those validated in the human species are univocally pursued. Multiomics analysis of the species-specific RBCs' biological characteristics could provide promising results both from a comparative perspective, by increasing our understanding of species suitable to be used as animal models, and in a strictly veterinary view, by contributing to the development of animal-targeted procedures.

2.
Vet J ; 202(2): 361-6, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25241947

RESUMO

Multipotent mesenchymal stromal cells (MSCs) have attracted a great deal of interest, due to several distinctive features, including the ability to migrate to damaged tissue and to participate in tissue regeneration. There is increasing evidence that membrane vesicles (MVs), comprising exosomes and shedding vesicles, represent a key component, responsible for many of the paracrine effects of MSCs. The aim of the present study was to establish whether equine adipose-derived MSCs (E-AdMSCs) produce MVs that are capable of influencing angiogenesis, a key step in tissue regeneration. A morphological study was performed using MSC monolayers, prepared for transmission and scanning electron microscopy and on ultracentrifuged MSC supernatants, to identify production of MVs. The ability of MVs to influence angiogenesis was evaluated by means of the rat aortic ring and scratch assays. The results demonstrated that MVs, constitutively produced by E-AdMSCs, are involved in intercellular communication with endothelial cells, stimulating angiogenesis. Although many questions remain regarding their formation, delivery, content and mechanism of action, the present study supports the concept that MVs released by MSCs have the potential to be exploited as a therapeutic tool for regenerative medicine.


Assuntos
Tecido Adiposo/fisiologia , Indutores da Angiogênese , Estruturas da Membrana Celular/fisiologia , Cavalos/fisiologia , Transplante de Células-Tronco Mesenquimais/veterinária , Células-Tronco Mesenquimais/fisiologia , Neovascularização Fisiológica , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA