Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Viruses ; 14(10)2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36298744

RESUMO

The alphaherpesvirus UL37 tegument protein is a highly conserved, multi-functional protein. Mutagenesis analysis delineated the UL37 domains necessary for retrograde transport and viral replication. Specifically, the amino-terminal 480 amino acids are dispensable for virus replication in epithelial cell culture, but it is unknown whether this amino-terminal deletion affects UL37 structure and intracellular transport in epithelial cells and neurons. To investigate the structure and function of UL37, we utilized multiple computational approaches to predict and characterize the secondary and tertiary structure and other functional features. The structure of HSV-1 UL37 and Δ481N were deduced using publicly available predictive algorithms. The predicted model of HSV-1 UL37 is a stable, multi-functional, globular monomer, rich in alpha helices, with unfolded regions within the linker and the C-tail domains. The highly flexible C-tail contains predicted binding sites to the dynein intermediate chain, as well as DNA and RNA. Predicted interactions with the cytoplasmic surface of the lipid membrane suggest UL37 is a peripheral membrane protein. The Δ481N truncation did not alter the predicted structure of the UL37 C-terminus protein and its predicted interaction with dynein. We validated these models by examining the replication kinetics and transport of the Δ481N virus toward the nuclei of infected epithelial and neuronal cells. The Δ481N virus had substantial defects in virus spread; however, it exhibited no apparent defects in virus entry and intracellular transport. Using computational analyses, we identified several key features of UL37, particularly the flexible unstructured tail; we then demonstrated that the UL37 C-terminus alone is sufficient to effectively transport the virus towards the nucleus of infected epithelial and neuronal cells.


Assuntos
Herpesvirus Humano 1 , Herpesvirus Humano 1/fisiologia , Dineínas/metabolismo , Proteínas Estruturais Virais/genética , Aminoácidos/metabolismo , RNA/metabolismo , Proteínas de Membrana/metabolismo , Lipídeos
2.
Exp Anim ; 70(2): 185-193, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33239488

RESUMO

Despite decades-long existence of the Philippine stingless bee industry, the biological activity of propolis from this native bee species (Tetragonula biroi Friese) remains poorly understood and sparingly investigated. Herein, we examined the potential anti-inflammatory efficacy of Philippine stingless bee propolis using the lambda (λ)-carrageenan-induced mice model of hind paw edema. Thirty (30), six-week-old, male ICR mice were randomly assigned into three treatment groups (n=10/group) as follows: distilled water group, diclofenac sodium group (10 mg/kg), and propolis group (100 mg/kg). All treatment were administered an hour prior to the injection of the phlogistic agent. As observed at 3 h post-injection, λ-carrageenan remarkably evoked the classical signs of hind paw edema exemplified grossly by swelling and hyperemia. The ameliorative effect of propolis became apparent at the onset of 6 h post-injection with a statistically significant finding evident at the 24-h period. This gross attenuation histologically correlated to a considerable and specific reduction of the dermal edema, which mirrored those of the diclofenac sodium group. Furthermore, both propolis and diclofenac sodium significantly attenuated the λ-carrageenan-induced increase in the protein expression levels of the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) depicting more than two-fold decrement relative to the distilled water group. Altogether, these suggest that Philippine stingless bee propolis also exhibited a promising in vivo anti-inflammatory property, which can be partly mediated through the inhibition of TNF-α.


Assuntos
Apiterapia , Carragenina , Edema , Doenças do Pé , Própole , Substâncias Protetoras , Animais , Masculino , Camundongos , Abelhas/química , Carragenina/efeitos adversos , Edema/induzido quimicamente , Edema/tratamento farmacológico , Pé/fisiopatologia , Doenças do Pé/induzido quimicamente , Doenças do Pé/diagnóstico , Camundongos Endogâmicos ICR , Própole/farmacologia , Substâncias Protetoras/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA