Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38469149

RESUMO

SOX10 is a lineage-specific transcription factor critical for melanoma tumor growth, while SOX10 loss-of-function drives the emergence of therapy-resistant, invasive melanoma phenotypes. A major challenge has been developing therapeutic strategies targeting SOX10's role in melanoma proliferation, while preventing a concomitant increase in tumor cell invasion. Here, we report that the lysine acetyltransferase (KAT) EP300 and SOX10 gene loci on Chromosome 22 are frequently co-amplified in melanomas, including UV-associated and acral tumors. We further show that p300 KAT activity mediates SOX10 protein stability and that the p300 inhibitor, A-485, downregulates SOX10 protein levels in melanoma cells via proteasome-mediated degradation. Additionally, A-485 potently inhibits proliferation of SOX10+ melanoma cells while decreasing invasion in AXLhigh/MITFlow melanoma cells through downregulation of metastasis-related genes. We conclude that the SOX10/p300 axis is critical to melanoma growth and invasion, and that inhibition of p300 KAT activity through A-485 may be a worthwhile therapeutic approach for SOX10-reliant tumors.

2.
J Clin Invest ; 134(6)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300709

RESUMO

Virtually all patients with BRAF-mutant melanoma develop resistance to MAPK inhibitors largely through nonmutational events. Although the epigenetic landscape is shown to be altered in therapy-resistant melanomas and other cancers, a specific targetable epigenetic mechanism has not been validated. Here, we evaluated the corepressor for element 1-silencing transcription factor (CoREST) epigenetic repressor complex and the recently developed bivalent inhibitor corin within the context of melanoma phenotype plasticity and therapeutic resistance. We found that CoREST was a critical mediator of the major distinct melanoma phenotypes and that corin treatment of melanoma cells led to phenotype reprogramming. Global assessment of transcript and chromatin changes conferred by corin revealed specific effects on histone marks connected to epithelial-mesenchymal transition-associated (EMT-associated) transcription factors and the dual-specificity phosphatases (DUSPs). Remarkably, treatment of BRAF inhibitor-resistant (BRAFi-R) melanomas with corin promoted resensitization to BRAFi therapy. DUSP1 was consistently downregulated in BRAFi-R melanomas, which was reversed by corin treatment and associated with inhibition of p38 MAPK activity and resensitization to BRAFi therapies. Moreover, this activity was recapitulated by the p38 MAPK inhibitor BIRB 796. These findings identify the CoREST repressor complex as a central mediator of melanoma phenotype plasticity and resistance to targeted therapy and suggest that CoREST inhibitors may prove beneficial for patients with BRAFi-resistant melanoma.


Assuntos
Melanoma , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Correpressoras/genética , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Fenótipo , Proteínas Quinases p38 Ativadas por Mitógeno
3.
Melanoma Res ; 33(4): 283-292, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37276030

RESUMO

Melanoma is a highly aggressive form of skin cancer and the most frequent lethal malignancy diagnosed by dermatologists. Although there have been advances for predicting melanoma prognosis, there are few highly sensitive and specific diagnostic tools for clinically evaluating suspicious melanocytic lesions prior to biopsy. We have recently determined that alterations in cellular lipid and pigment content are associated with tumor progression and melanoma metastasis. Here, we seek to determine if lipid droplet and pigment content assessments near the skin's surface are able to distinguish benign from malignant melanocytic lesions. We obtained 14 benign melanocytic lesions, classified as Melanocytic Pathology Assessment Tool and Hierarchy for Diagnosis (MPATH-Dx) class 1, and 22 malignant melanomas, classified as MPATH-Dx class 4 or 5, from Boston Medical Center. The malignant melanomas had an average greatest thickness of 1.8 ±â€…2.1 mm with 7/22 biopsies showing the presence of ulceration. Tissues were stained with the Fontana Masson stain to detect pigment or immunohistochemically stained for adipophilin, the main protein component of lipid droplets, to detect lipid droplets. Pigment and lipid droplets were quantified using ImageJ and CellProfiler, respectively. We found no significant difference in total pigment area between benign melanocytic lesions and malignant melanoma, and a 66% decrease in lipid content and 68% reduction in lipid/pigment content between benign melanocytic lesions and malignant melanoma ( P  < 0.05). Our results suggest that lipid content and lipid/pigment content ratios may distinguish benign and malignant melanocytic lesions, which may be useful as a diagnostic tool for histopathologically challenging pigmented lesions.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/diagnóstico , Melanoma/patologia , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/patologia , Melanócitos/patologia , Prognóstico , Lipídeos
4.
Epigenomics ; 15(3): 167-187, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37020393

RESUMO

Epigenetics encompasses heritable, reversible gene expression patterns that do not arise from mutations in genomic DNA but, rather, are regulated by DNA methylation, histone modifications, RNA modifications and ncRNAs; and epigenetic dysregulation is increasingly recognized as a mechanism of neoplastic disease progression as well as resistance to cancer therapy. This review article focuses on epigenetic modifications implicated in the progression and therapeutic resistance of common cutaneous malignancies, including basal cell carcinoma, squamous cell carcinoma, T-cell lymphoma and malignant melanoma, with an emphasis on therapeutic strategies that may be used to target such disease-associated alterations.


Epigenetics involves the study of how genes can be turned on or off by factors that affect how these genes are packaged and regulated. In cancer, there are often epigenetic changes that contribute to the formation of tumors. Many of these epigenetic changes, some of which can be passed down through generations, increase the risk of skin cancers such as basal cell carcinoma, squamous cell carcinoma, T-cell lymphoma and malignant melanoma. Emerging therapies designed to target these epigenetic changes may be effective treatments for these types of skin cancers. Researchers are currently investigating how to best use these therapies to help the ever-increasing number of people with skin cancer.


Assuntos
Carcinoma Basocelular , Melanoma , Neoplasias Cutâneas , Humanos , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/patologia , Melanoma/genética , Epigênese Genética , Carcinoma Basocelular/genética , Carcinoma Basocelular/patologia , Metilação de DNA
5.
Clin Rev Allergy Immunol ; 63(3): 447-471, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36346551

RESUMO

Epigenetics is the study of heritable, reversible gene expression patterns that do not originate from alterations in the DNA sequence. Epigenetic modifications influence gene expression patterns and include DNA methylation, histone modifications, and gene regulation via non-coding RNAs. While the study of epigenetics has been most broadly applied to neoplastic diseases, the role of the epigenome in a wide range of disease processes including autoimmune, allergic, and inflammatory processes is increasingly being recognized. Recent advances in the study of the epigenome have led to novel insights into the pathogenesis and potential therapeutic targets of various pathologic entities including inflammatory diseases. In this review, we examine the nature of epigenetic modifications in several well-studied autoimmune, allergic, and/or inflammatory disorders of the skin including systemic lupus erythematosus, vitiligo, systemic sclerosis, alopecia areata, pemphigus, psoriasis, atopic dermatitis, keloidal scarring, and hidradenitis suppurativa with the aim to determine how such epigenetic changes may be targeted for therapeutic benefit.


Assuntos
Alopecia em Áreas , Psoríase , Humanos , Epigenômica , Epigênese Genética , Pele , Psoríase/genética
6.
BME Front ; 2021: 9860123, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37849907

RESUMO

Objective and Impact Statement. Molecular signatures are needed for early diagnosis and improved treatment of metastatic melanoma. By high-resolution multimodal chemical imaging of human melanoma samples, we identify a metabolic reprogramming from pigmentation to lipid droplet (LD) accumulation in metastatic melanoma. Introduction. Metabolic plasticity promotes cancer survival and metastasis, which promises to serve as a prognostic marker and/or therapeutic target. However, identifying metabolic alterations has been challenged by difficulties in mapping localized metabolites with high spatial resolution. Methods. We developed a multimodal stimulated Raman scattering and pump-probe imaging platform. By time-domain measurement and phasor analysis, our platform allows simultaneous mapping of lipids and pigments at a subcellular level. Furthermore, we identify the sources of these metabolic signatures by tracking deuterium metabolites at a subcellular level. By validation with mass spectrometry, a specific fatty acid desaturase pathway was identified. Results. We identified metabolic reprogramming from a pigment-containing phenotype in low-grade melanoma to an LD-rich phenotype in metastatic melanoma. The LDs contain high levels of cholesteryl ester and unsaturated fatty acids. Elevated fatty acid uptake, but not de novo lipogenesis, contributes to the LD-rich phenotype. Monounsaturated sapienate, mediated by FADS2, is identified as an essential fatty acid that promotes cancer migration. Blocking such metabolic signatures effectively suppresses the migration capacity both in vitro and in vivo. Conclusion. By multimodal spectroscopic imaging and lipidomic analysis, the current study reveals lipid accumulation, mediated by fatty acid uptake, as a metabolic signature that can be harnessed for early diagnosis and improved treatment of metastatic melanoma.

7.
Integr Cancer Ther ; 19: 1534735420917444, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32578460

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that tends to affect young women and has a high propensity to metastasize. No targeted treatments are available for this type of breast cancer due to a lack of estrogen or progesterone receptors or overexpression of human epidermal growth factor receptor type 2 overexpression. Currently, patients have no therapeutic options once standard of care is complete, indicating a need for safe and effective therapies to slow or prevent the progression of TNBC to metastatic disease. Studies showed that isolated polyphenols or polyphenol-rich muscadine grape extracts polyphenols inhibit the proliferation of various cancer cells including breast cancer. A proprietary muscadine grape extract (MGE) was administered to nude mice with human MDA-MB-231 TNBC atumors for 4 weeks to determine the effect of the extract on tumor growth. MGE decreased tumor volume in association with a reduction in the proliferative markers Ki67 and cyclin D1. To determine the molecular mechanisms for the MGE-induced reduction in tumor growth, mouse 4T1, MDA-MB-231, or human BT-549 TNBC cells were treated with MGE, and various signaling pathways were investigated. MGE reduced c-Met, differentially abrogated ERK/MAPK and AKT signaling, and decreased a downstream targets of ERK/MAPK and AKT pathways, cyclin D1. Cyclin D1 reduction was associated with retinoblastoma activation and cell cycle arrest in MDA-MB-231 TNBC cells. MGE-regulated molecular signaling pathways were functionally associated with a dose-dependent reduction in cell proliferation. The pluripotency of MGE and high index of safety and tolerability suggest that the extract may serve as a therapeutic to reduce TNBC progression to metastatic disease.


Assuntos
Extratos Vegetais , Neoplasias de Mama Triplo Negativas , Vitis , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Camundongos , Camundongos Nus , Extratos Vegetais/farmacologia , Polifenóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA