Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(7): 159515, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38844203

RESUMO

Although our current knowledge of the molecular crosstalk between the ER stress, the unfolded protein response (UPR), and lipid homeostasis remains limited, there is increasing evidence that dysregulation of either protein or lipid homeostasis profoundly affects the other. Most research regarding UPR signaling in human diseases has focused on the causes and consequences of disrupted protein folding. The UPR itself consists of very complex pathways that function to not only maintain protein homeostasis, but just as importantly, modulate lipid biogenesis to allow the ER to adjust and promote cell survival. Lipid dysregulation is known to activate many aspects of the UPR, but the complexity of this crosstalk remains a major research barrier. ER lipid disequilibrium and lipotoxicity are known to be important contributors to numerous human pathologies, including insulin resistance, liver disease, cardiovascular diseases, neurodegenerative diseases, and cancer. Despite their medical significance and continuous research, however, the molecular mechanisms that modulate lipid synthesis during ER stress conditions, and their impact on cell fate decisions, remain poorly understood. Here we summarize the current view on crosstalk and connections between altered lipid metabolism, ER stress, and the UPR.


Assuntos
Estresse do Retículo Endoplasmático , Metabolismo dos Lipídeos , Resposta a Proteínas não Dobradas , Humanos , Animais , Transdução de Sinais , Retículo Endoplasmático/metabolismo , Homeostase
2.
Eur J Cell Biol ; 103(2): 151386, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38262137

RESUMO

Hypoxia-inducible factors (HIFs) are transcription factors that reprogram the transcriptome for cells to survive hypoxic insults and oxidative stress. They are important during embryonic development and reprogram the cells to utilize glycolysis when the oxygen levels are extremely low. This metabolic change facilitates normal cell survival as well as cancer cell survival. The key feature in survival is the transition between acute hypoxia and chronic hypoxia, and this is regulated by the transition between HIF-1 expression and HIF-2/HIF-3 expression. This transition is observed in many human cancers and endothelial cells and referred to as the HIF Switch. Here we discuss the mechanisms involved in the HIF Switch in human endothelial and cancer cells which include mRNA and protein levels of the alpha chains of the HIFs. A major continuing effort in this field is directed towards determining the differences between normal and tumor cell utilization of this important pathway, and how this could lead to potential therapeutic approaches.


Assuntos
Células Endoteliais , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética , Células Endoteliais/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hipóxia Celular
3.
Curr Top Dev Biol ; 155: 39-94, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38043952

RESUMO

The nonmotile primary cilium is a sensory structure found on most mammalian cell types that integrates multiple signaling pathways involved in tissue development and postnatal function. As such, mutations disrupting cilia activities cause a group of disorders referred to as ciliopathies. These disorders exhibit a wide spectrum of phenotypes impacting nearly every tissue. In the kidney, primary cilia dysfunction caused by mutations in polycystin 1 (Pkd1), polycystin 2 (Pkd2), or polycystic kidney and hepatic disease 1 (Pkhd1), result in polycystic kidney disease (PKD), a progressive disorder causing renal functional decline and end-stage renal disease. PKD affects nearly 1 in 1000 individuals and as there is no cure for PKD, patients frequently require dialysis or renal transplantation. Pkd1, Pkd2, and Pkhd1 encode membrane proteins that all localize in the cilium. Pkd1 and Pkd2 function as a nonselective cation channel complex while Pkhd1 protein function remains uncertain. Data indicate that the cilium may act as a mechanosensor to detect fluid movement through renal tubules. Other functions proposed for the cilium and PKD proteins in cyst development involve regulation of cell cycle and oriented division, regulation of renal inflammation and repair processes, maintenance of epithelial cell differentiation, and regulation of mitochondrial structure and metabolism. However, how loss of cilia or cilia function leads to cyst development remains elusive. Studies directed at understanding the roles of Pkd1, Pkd2, and Pkhd1 in the cilium and other locations within the cell will be important for developing therapeutic strategies to slow cyst progression.


Assuntos
Cistos , Doenças Renais Policísticas , Animais , Humanos , Cílios/metabolismo , Rim , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/metabolismo , Cistos/metabolismo , Mamíferos
4.
J Cell Commun Signal ; 17(4): 1145-1161, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37721642

RESUMO

The unfolded protein response (UPR) is a cellular mechanism that protects cells during stress conditions in which there is an accumulation of misfolded proteins in the endoplasmic reticulum (ER). UPR activates three signaling pathways that function to alleviate stress conditions and promote cellular homeostasis and cell survival. During unmitigated stress conditions, however, UPR activation signaling changes to promote cell death through apoptosis. Interestingly, cancer cells take advantage of this pathway to facilitate survival and avoid apoptosis even during prolonged cell stress conditions. Here, we discuss different signaling pathways associated with UPR and focus specifically on one of the ER signaling pathways activated during UPR, inositol-requiring enzyme 1α (IRE1). The rationale is that the IRE1 pathway is associated with cell fate decisions and recognized as a promising target for cancer therapeutics. Here we discuss IRE1 inhibitors and how they might prove to be an effective cancer therapeutic.

5.
Cancers (Basel) ; 15(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37296866

RESUMO

MicroRNAs (miRNAs) play a critical role in the regulation of mRNA stability and translation. In spite of our present knowledge on the mechanisms of mRNA regulation by miRNAs, the utilization and translation of these ncRNAs into clinical applications have been problematic. Using hsa-miR-429 as an example, we discuss the limitations encountered in the development of efficient miRNA-related therapies and diagnostic approaches. The miR-200 family members, which include hsa-miR-429, have been shown to be dysregulated in different types of cancer. Although these miR-200 family members have been shown to function in suppressing epithelial-to-mesenchymal transition, tumor metastasis, and chemoresistance, the experimental results have often been contradictory. These complications involve not only the complex networks involving these noncoding RNAs, but also the problem of identifying false positives. To overcome these limitations, a more comprehensive research strategy is needed to increase our understanding of the mechanisms underlying their biological role in mRNA regulation. Here, we provide a literature analysis of the verified hsa-miR-429 targets in various human research models. A meta-analysis of this work is presented to provide better insights into the role of hsa-miR-429 in cancer diagnosis and any potential therapeutic approach.

6.
Ann Thorac Surg ; 116(4): 834-843, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35398036

RESUMO

BACKGROUND: Patients with valvular heart disease require cardiopulmonary bypass and cardiac arrest. Here, we test the hypothesis that exosomal hemoglobin formed during cardiopulmonary bypass mediates acute cardiac injury in humans and in an animal model system. METHODS: Plasma exosomes were collected from arterial blood at baseline and 30 minutes after aortic cross-clamp release in 20 patients with primary mitral regurgitation and 7 with aortic stenosis. These exosomes were injected into Sprague-Dawley rats and studied at multiple times up to 30 days. Tissue was examined by hematoxylin and eosin stain, immunohistochemistry, transmission electron microscopy, and brain natriuretic peptide. RESULTS: Troponin I levels increased from 36 ± 88 ng/L to 3622 ± 3054 ng/L and correlated with exosome hemoglobin content (Spearman r = 0.7136, < .0001, n = 24). Injection of exosomes isolated 30 minutes after cross-clamp release into Sprague-Dawley rats resulted in cardiomyocyte myofibrillar loss at 3 days. Transmission electron microscopy demonstrated accumulation of electron dense particles of ferritin within cardiomyocytes, in the interstitial space, and within exosomes. At 21 days after injection, there was myofibrillar and myosin breakdown, interstitial fibrosis, elevated brain natriuretic peptide, and left ventricle diastolic dysfunction measured by echocardiography/Doppler. Pericardial fluid exosomal hemoglobin content is fourfold higher than simultaneous plasma exosome hemoglobin, suggesting a cardiac source of exosomal hemoglobin. CONCLUSIONS: Red blood cell and cardiac-derived exosomal hemoglobin may be involved in myocardial injury during cardiopulmonary bypass in patients with valvular heart disease.


Assuntos
Exossomos , Traumatismos Cardíacos , Doenças das Valvas Cardíacas , Humanos , Ratos , Animais , Ratos Sprague-Dawley , Peptídeo Natriurético Encefálico , Miócitos Cardíacos , Modelos Animais de Doenças
7.
Dis Model Mech ; 16(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36457161

RESUMO

Although renal macrophages have been shown to contribute to cyst development in polycystic kidney disease (PKD) animal models, it remains unclear whether there is a specific macrophage subpopulation involved. Here, we analyzed changes in macrophage populations during renal maturation in association with cystogenesis rates in conditional Pkd2 mutant mice. We observed that CD206+ resident macrophages were minimal in a normal adult kidney but accumulated in cystic areas in adult-induced Pkd2 mutants. Using Cx3cr1 null mice, we reduced macrophage number, including CD206+ macrophages, and showed that this significantly reduced cyst severity in adult-induced Pkd2 mutant kidneys. We also found that the number of CD206+ resident macrophage-like cells increased in kidneys and in the urine from autosomal-dominant PKD (ADPKD) patients relative to the rate of renal functional decline. These data indicate a direct correlation between CD206+ resident macrophages and cyst formation, and reveal that the CD206+ resident macrophages in urine could serve as a biomarker for renal cystic disease activity in preclinical models and ADPKD patients. This article has an associated First Person interview with the first author of the paper.


Assuntos
Cistos , Rim Policístico Autossômico Dominante , Camundongos , Animais , Rim , Macrófagos , Camundongos Knockout , Biomarcadores , Modelos Animais de Doenças
8.
Cell Mol Biol Lett ; 27(1): 109, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482296

RESUMO

The hypoxia-inducible factors (HIF) are transcription factors that activate the adaptive hypoxic response when oxygen levels are low. The HIF transcriptional program increases oxygen delivery by inducing angiogenesis and by promoting metabolic reprograming that favors glycolysis. The two major HIFs, HIF-1 and HIF-2, mediate this response during prolonged hypoxia in an overlapping and sequential fashion that is referred to as the HIF switch. Both HIF proteins consist of an unstable alpha chain and a stable beta chain. The instability of the alpha chains is mediated by prolyl hydroxylase (PHD) activity during normoxic conditions, which leads to ubiquitination and proteasomal degradation of the alpha chains. During normoxic conditions, very little HIF-1 or HIF-2 alpha-beta dimers are present because of PHD activity. During hypoxia, however, PHD activity is suppressed, and HIF dimers are stable. Here we demonstrate that HIF-1 expression is maximal after 4 h of hypoxia in primary endothelial cells and then is dramatically reduced by 8 h. In contrast, HIF-2 is maximal at 8 h and remains elevated up to 24 h. There are differences in the HIF-1 and HIF-2 transcriptional profiles, and therefore understanding how the transition between them occurs is important and not clearly understood. Here we demonstrate that the HIF-1 to HIF-2 transition during prolonged hypoxia is mediated by two mechanisms: (1) the HIF-1 driven increase in the glycolytic pathways that reactivates PHD activity and (2) the much less stable mRNA levels of HIF-1α (HIF1A) compared to HIF-2α (EPAS1) mRNA. We also demonstrate that the alpha mRNA levels directly correlate to the relative alpha protein levels, and therefore to the more stable HIF-2 expression during prolonged hypoxia.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Hipóxia Celular , Células Endoteliais , Subunidade alfa do Fator 1 Induzível por Hipóxia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Oxigênio , Estabilidade de RNA , RNA Mensageiro/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
9.
Cancers (Basel) ; 14(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36230792

RESUMO

Despite our understanding of the unfolded protein response (UPR) pathways, the crosstalk between the UPR and the complex signaling networks that different cancers utilize for cell survival remains to be, in most cases, a difficult research barrier. A major problem is the constant variability of different cancer types and the different stages of cancer as well as the complexity of the tumor microenvironments (TME). This complexity often leads to apparently contradictory results. Furthermore, the majority of the studies that have been conducted have utilized two-dimensional in vitro cultures of cancer cells that were exposed to continuous hypoxia, and this approach may not mimic the dynamic and cyclic conditions that are found in solid tumors. Here, we discuss the role of intermittent hypoxia, one of inducers of the UPR in the cellular component of TME, and the way in which intermittent hypoxia induces high levels of reactive oxygen species, the activation of the UPR, and the way in which cancer cells modulate the UPR to aid in their survival. Although the past decade has resulted in defining the complex, novel non-coding RNA-based regulatory networks that modulate the means by which hypoxia influences the UPR, we are now just to beginning to understand some of the connections between hypoxia, the UPR, and the TME.

10.
J Thorac Cardiovasc Surg ; 164(6): e289-e308, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33451850

RESUMO

OBJECTIVE: Hemolysis, characterized by formation of free hemoglobin (Hb), occurs in patients undergoing cardiopulmonary bypass (CPB). However, there is no study of the dynamic changes in red blood cell (RBC)-derived exosomes (Exos) released during CPB, nor whether these particles mediate acute kidney injury (AKI). METHODS: This study is a comprehensive time-course analysis, at baseline, 30 minutes, to 24 hours post-crossclamp release (XCR) to determine (1) Exos Hb content; (2) free Hb/heme, haptoglobin, hemopexin; and (3) urinary markers of AKI over the same time period. In addition, we developed a model system in Sprague-Dawley rats to test for AKI after intravenous injection of Exos Hb released during CPB. RESULTS: In 30 patients undergoing CPB, there is a significant increase in plasma Hb-positive Exos but not microvesicles 30 minutes post-XCR versus other time points, with a simultaneous decrease in the haptoglobin/Hb ratio. These changes presage a significant increase in urine neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 at 24 hours. Intravenous injection of plasma Exos (109-10 particles obtained 30 minutes post-XCR) into rats causes AKI at 72 hours, manifested by multifocal degeneration of proximal tubular epithelium. At 21 days, there is persistent tubular injury and interstitial fibrosis. Intravenous injection of Exos from 35-day-old stored RBCs into rats results in glomerular-tubular injury, increased kidney ferritin and hemoxygenase-1 expression, and significant elevation of kidney injury molecule-1 and proteinuria at 72 hours. CONCLUSIONS: These combined studies raise the potential for RBC-derived Exos, released during CPB, to target the kidney and mediate AKI.


Assuntos
Injúria Renal Aguda , Exossomos , Ratos , Animais , Ponte Cardiopulmonar/efeitos adversos , Haptoglobinas/metabolismo , Exossomos/metabolismo , Ratos Sprague-Dawley , Lipocalina-2 , Biomarcadores , Hemoglobinas/metabolismo , Modelos Animais de Doenças , Eritrócitos/metabolismo
11.
Cell Mol Life Sci ; 78(21-22): 7061-7080, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34636989

RESUMO

Accumulation of misfolded proteins in ER activates the unfolded protein response (UPR), a multifunctional signaling pathway that is important for cell survival. The UPR is regulated by three ER transmembrane sensors, one of which is inositol-requiring protein 1 (IRE1). IRE1 activates a transcription factor, X-box-binding protein 1 (XBP1), by removing a 26-base intron from XBP1 mRNA that generates spliced XBP1 mRNA (XBP1s). To search for XBP1 transcriptional targets, we utilized an XBP1s-inducible human cell line to limit XBP1 expression in a controlled manner. We also verified the identified XBP1-dependent genes with specific silencing of this transcription factor during pharmacological ER stress induction with both an N-linked glycosylation inhibitor (tunicamycin) and a non-competitive inhibitor of the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) (thapsigargin). We then compared those results to the XBP1s-induced cell line without pharmacological ER stress induction. Using next-generation sequencing followed by bioinformatic analysis of XBP1-binding motifs, we defined an XBP1 regulatory network and identified XBP1 as a repressor of PUMA (a proapoptotic gene) and IRE1 mRNA expression during the UPR. Our results indicate impairing IRE1 activity during ER stress conditions accelerates cell death in ER-stressed cells, whereas elevating XBP1 expression during ER stress using an inducible cell line correlated with a clear prosurvival effect and reduced PUMA protein expression. Although further studies will be required to test the underlying molecular mechanisms involved in the relationship between these genes with XBP1, these studies identify a novel repressive role of XBP1 during the UPR.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Endorribonucleases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/genética , Proteína 1 de Ligação a X-Box/genética , Linhagem Celular , Linhagem Celular Tumoral , Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/genética , Células HaCaT , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Transdução de Sinais/genética , Resposta a Proteínas não Dobradas/genética
12.
Cell Mol Biol Lett ; 26(1): 11, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33730996

RESUMO

Inositol requiring enzyme 1 alpha (IRE1α) is one of three signaling sensors in the unfolding protein response (UPR) that alleviates endoplasmic reticulum (ER) stress in cells and functions to promote cell survival. During conditions of irrevocable stress, proapoptotic gene expression is induced to promote cell death. One of the three signaling stressors, IRE1α is an serine/threonine-protein kinase/endoribonuclease (RNase) that promotes nonconventional splicing of XBP1 mRNA that is translated to spliced XBP1 (XBP1s), an active prosurvival transcription factor. Interestingly, elevated IRE1α and XBP1s are both associated with poor cancer survival and drug resistance. In this study, we used next-generation sequencing analyses to demonstrate that triazoloacridone C-1305, a microtubule stabilizing agent that also has topoisomerase II inhibitory activity, dramatically decreases XBP1s mRNA levels and protein production during ER stress conditions, suggesting that C-1305 does this by decreasing IRE1α's endonuclease activity.


Assuntos
Acridinas/farmacologia , Endorribonucleases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Splicing de RNA/genética , Triazóis/farmacologia , Proteína 1 de Ligação a X-Box/genética , Acridinas/química , Linhagem Celular , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Himecromona/análogos & derivados , Himecromona/química , Himecromona/farmacologia , Splicing de RNA/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Triazóis/química
13.
Cancers (Basel) ; 12(11)2020 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-33113880

RESUMO

Tremendous progress in RNAi delivery methods and design has allowed for the effective development of siRNA-based therapeutics that are currently under clinical investigation for various cancer treatments. This approach has the potential to revolutionize cancer therapy by providing the ability to specifically downregulate or upregulate the mRNA of any protein of interest. This exquisite specificity, unfortunately, also has a downside. Genetic variations in the human population are common because of the presence of single nucleotide polymorphisms (SNPs). SNPs lead to synonymous and non-synonymous changes and they occur once in every 300 base pairs in both coding and non-coding regions in the human genome. Much less common are the somatic mosaicism variations associated with genetically distinct populations of cells within an individual that is derived from postzygotic mutations. These heterogeneities in the population can affect the RNAi's efficacy or more problematically, which can lead to unpredictable and sometimes adverse side effects. From a more positive viewpoint, both SNPs and somatic mosaicisms have also been implicated in human diseases, including cancer, and these specific changes could offer the ability to effectively and, more importantly, selectively target the cancer cells. In this review, we discuss how SNPs in the human population can influence the development and success of novel anticancer RNAi therapies and the importance of why SNPs should be carefully considered.

14.
Biomolecules ; 10(6)2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545307

RESUMO

While the role of hypoxia and the induction of the hypoxia inducible factors (HIFs) and the unfolded protein response (UPR) pathways in the cancer microenvironment are well characterized, their roles and relationship in normal human endothelium are less clear. Here, we examined the effects of IRE1 on HIF-1α protein levels during hypoxia in primary human umbilical vein endothelial cells (HUVECs). The results demonstrated that HIF-1α levels peaked at 6 h of hypoxia along with two of their target genes, GLUT1 and VEGFA, whereas at up to 12 h of hypoxia the mRNA levels of markers of the UPR, IRE1, XBP1s, BiP, and CHOP, did not increase, suggesting that the UPR was not activated. Interestingly, the siRNA knockdown of IRE1 or inhibition of IRE1 endonuclease activity with 4µ8C during hypoxia significantly reduced HIF-1α protein without affecting HIF1A mRNA expression. The inhibition of the endonuclease activity with 4µ8C in two other primary endothelial cells during hypoxia, human cardiac microvascular endothelial cells and human aortic endothelial cells showed the same reduction in the HIF-1α protein. Surprisingly, the siRNA knockdown of XBP1s during hypoxia did not decrease the HIF1α protein levels, indicating that the IRE1-mediated effect on stabilizing the HIF1α protein levels was XBP1s-independent. The studies presented here, therefore, provide evidence that IRE1 activity during hypoxia increases the protein levels of HIF1α in an XBP1s-independent manner.


Assuntos
Hipóxia Celular , Endorribonucleases/fisiologia , Células Endoteliais/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/genética , Células Cultivadas , Endorribonucleases/antagonistas & inibidores , Endorribonucleases/metabolismo , Células Endoteliais/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
15.
Cancers (Basel) ; 12(4)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252403

RESUMO

Rational drug design and in vitro pharmacology profiling constitute the gold standard in drug development pipelines. Problems arise, however, because this process is often difficult due to limited information regarding the complete identification of a molecule's biological activities. The increasing affordability of genome-wide next-generation technologies now provides an excellent opportunity to understand a compound's diverse effects on gene regulation. Here, we used an unbiased approach in lung and colon cancer cell lines to identify the early transcriptomic signatures of C-1305 cytotoxicity that highlight the novel pathways responsible for its biological activity. Our results demonstrate that C-1305 promotes direct microtubule stabilization as a part of its mechanism of action that leads to apoptosis. Furthermore, we show that C-1305 promotes G2 cell cycle arrest by modulating gene expression. The results indicate that C-1305 is the first microtubule stabilizing agent that also is a topoisomerase II inhibitor. This study provides a novel approach and methodology for delineating the antitumor mechanisms of other putative anticancer drug candidates.

16.
Cell Mol Biol Lett ; 25: 18, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32190062

RESUMO

During hypoxic conditions, cells undergo critical adaptive responses that include the up-regulation of hypoxia-inducible proteins (HIFs) and the induction of the unfolded protein response (UPR). While their induced signaling pathways have many distinct targets, there are some important connections as well. Despite the extensive studies on both of these signaling pathways, the exact mechanisms involved that determine survival versus apoptosis remain largely unexplained and therefore beyond therapeutic control. Here we discuss the complex relationship between the HIF and UPR signaling pathways and the importance of understanding how these pathways differ between normal and cancer cell models.


Assuntos
Estresse do Retículo Endoplasmático/genética , Isquemia/metabolismo , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Resposta a Proteínas não Dobradas/genética , Apoptose/genética , Apoptose/fisiologia , Hipóxia Celular/genética , Hipóxia Celular/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Isquemia/genética , Mitocôndrias/genética , Neoplasias/genética , Transdução de Sinais/genética , Resposta a Proteínas não Dobradas/fisiologia
17.
FASEB J ; 33(10): 11541-11554, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31314593

RESUMO

During endoplasmic reticulum (ER) stress conditions, an adaptive signaling network termed the unfolded protein response (UPR) is activated. The UPR's function is to increase ER protein-folding capacity in order to attenuate ER stress, restore ER homeostasis, and, most importantly, promote cell survival. X-box-binding protein 1 (XBP1) is one component of the UPR and is a proadaptive transcription factor that is subject to transcriptional, post-transcriptional, and post-translational control. In the present study, we identified a post-transcriptional mechanism mediated by miR-34c-5p that governs the expression of both the spliced (active) and unspliced (latent) forms of XBP1 mRNAs. We showed that miR-34c-5p directly attenuates spliced XBP1 (XBP1s) mRNA levels during ER stress and thus regulates the proadaptive component of the UPR that is mediated by XBP1s without interfering with the induction of apoptotic responses.-Bartoszewska, S., Cabaj, A., Dabrowski, M., Collawn, J. F., Bartoszewski, R. miR-34c-5p modulates X-box-binding protein 1 (XBP1) expression during the adaptive phase of the unfolded protein response.


Assuntos
MicroRNAs/genética , Resposta a Proteínas não Dobradas/genética , Proteína 1 de Ligação a X-Box/genética , Apoptose/genética , Linhagem Celular Tumoral , Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica/genética , Células HeLa , Humanos , Dobramento de Proteína , Processamento Pós-Transcricional do RNA/genética , Splicing de RNA/genética , RNA Mensageiro/genética , Transdução de Sinais/genética , Transcrição Gênica/genética
18.
FASEB J ; 33(7): 7929-7941, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30917010

RESUMO

During hypoxia, a cellular adaptive response activates hypoxia-inducible factors (HIFs; HIF-1 and HIF-2) that respond to low tissue-oxygen levels and induce the expression of a number of genes that promote angiogenesis, energy metabolism, and cell survival. HIF-1 and HIF-2 regulate endothelial cell (EC) adaptation by activating gene-signaling cascades that promote endothelial migration, growth, and differentiation. An HIF-1 to HIF-2 transition or switch governs this process from acute to prolonged hypoxia. In the present study, we evaluated the mechanisms governing the HIF switch in 10 different primary human ECs from different vascular beds during the early stages of hypoxia. The studies demonstrate that the switch from HIF-1 to HIF-2 constitutes a universal mechanism of cellular adaptation to hypoxic stress and that HIF1A and HIF2A mRNA stability differences contribute to HIF switch. Furthermore, using 4 genome-wide mRNA expression arrays of HUVECs during normoxia and after 2, 8, and 16 h of hypoxia, we show using bioinformatics analyses that, although a number of genes appeared to be regulated exclusively by HIF-1 or HIF-2, the largest number of genes appeared to be regulated by both.-Bartoszewski, R., Moszynska, A., Serocki, M., Cabaj, A., Polten, A., Ochocka, R., Dell'Italia, L., Bartoszewska, S., Króliczewski, J., Dabrowski, M., Collawn, J. F. Primary endothelial cell-specific regulation of hypoxia-inducible factor (HIF)-1 and HIF-2 and their target gene expression profiles during hypoxia.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipóxia Celular/genética , Células Endoteliais/metabolismo , Regulação da Expressão Gênica/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Adaptação Fisiológica/genética , Aorta/citologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Meia-Vida , Células Endoteliais da Veia Umbilical Humana , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Artéria Ilíaca/citologia , Especificidade de Órgãos , Cultura Primária de Células , Artéria Pulmonar/citologia , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Pele/irrigação sanguínea , Útero/irrigação sanguínea
19.
Cell Signal ; 54: 150-160, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30550764

RESUMO

Solid tumor microenvironments are often subjected to various levels of hypoxia. Although regulation of gene expression has been examined extensively, most studies have focused on prolonged hypoxia. The tumor microenvironment, however, experiences waves of hypoxia and reoxygenation that stimulate the expression of pro-angiogenic factors that promote blood vessel formation. In this study, we examined human umbilical vascular endothelial cells (HUVECs) under waves of intermittent (cyclic) hypoxia to determine how this process compares to prolonged hypoxia, and more importantly, how this influences the microRNA profiles that potentially affect the posttranscriptional regulation of angiogenic genes. The rationale for these studies is that cancer cells subjected to cyclic hypoxia appear to have increased metastatic potential and endothelial cells exhibit a higher radiation resistance and greater migration potential. This indicates that gene regulatory networks in cyclic hypoxia may be different from prolonged hypoxia. Here we examined the consequences of cyclic hypoxia on miRNA gene expression and how these changes in miRNA expression influence angiogenesis. Using Next Generation Sequencing, our results demonstrate that cyclic hypoxia has very different effects on the miRNA networks compared to prolonged hypoxia, and that the in silico predicted effects on the certain mRNA target genes are more similar than might be expected. More importantly, these studies indicate that identifying potential miRNAs (including hsa-miR-19a-5p) as therapeutic targets for inhibiting angiogenesis and tumor progression will require this type of physiologically relevant analysis.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Hipóxia Celular , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Neovascularização Patológica , Microambiente Tumoral
20.
Sci Rep ; 8(1): 16431, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30401887

RESUMO

Small noncoding microRNAs (miRNAs) post-transcriptionally regulate a large portion of the human transcriptome. miRNAs have been shown to play an important role in the unfolded protein response (UPR), a cellular adaptive mechanism that is important in alleviating endoplasmic reticulum (ER) stress and promoting cell recovery. Another class of small noncoding RNAs, the Piwi-interacting RNAs (piRNAs) together with PIWI proteins, was originally shown to play a role as repressors of germline transposable elements. More recent studies, however, indicate that P-element induced WImpy proteins (PIWI proteins) and piRNAs also regulate mRNA levels in somatic tissues. Using genome-wide small RNA next generation sequencing, cell viability assays, and caspase activity assays in human airway epithelial cells, we demonstrate that ER stress specifically up-regulates total piRNA expression profiles, and these changes correlate with UPR-induced apoptosis as shown by up-regulation of two pro-apoptotic factor mRNAs, CHOP and NOXA. Furthermore, siRNA knockdown of PIWIL2 and PIWIL4, two proteins involved in piRNA function, attenuates UPR-related cell death, inhibits piRNA expression, and inhibits the up-regulation of CHOP and NOXA mRNA expression. Hence, we provide evidence that PIWIL2 and PIWIL4 proteins, and potentially the up-regulated piRNAs, constitute a novel epigenetic mechanism that control cellular fate during the UPR.


Assuntos
Apoptose , Proteínas Argonautas/metabolismo , Brônquios/patologia , Estresse do Retículo Endoplasmático , Células Epiteliais/patologia , Resposta a Proteínas não Dobradas , Proteínas Argonautas/antagonistas & inibidores , Proteínas Argonautas/genética , Brônquios/metabolismo , Sobrevivência Celular , Células Cultivadas , Células Epiteliais/metabolismo , Humanos , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA