Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Microbiol ; 56(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29743308

RESUMO

The tick-borne protozoan Babesia microti is responsible for more than 200 cases of transfusion-transmitted babesiosis (TTB) infection in the United States that have occurred over the last 30 years. Measures to mitigate the risk of TTB include nucleic acid testing (NAT) and B. microti antibody testing. A fully automated prototype B. microti antibody test was developed on the Architect instrument. The specificity was determined to be 99.98% in volunteer blood donors (n = 28,740) from areas considered to have low endemicity for B. microti The sensitivity of the prototype test was studied in experimentally infected macaques; a total of 128 samples were detected as positive whereas 125 were detected as positive with an indirect fluorescent antibody (IFA) test; additionally, 83 (89.2%) of the PCR-positive samples were detected in contrast to 81 (87.1%) using an IFA test. All PCR-positive samples that tested negative in the prototype antibody test were preseroconversion period samples. Following seroconversion, periods of intermittent parasitemia occurred; 17 PCR-negative samples drawn in between PCR-positive bleed dates tested positive both by the prototype test (robust reactivity) and IFA test (marginal reactivity) prior to the administration of therapeutic drugs, indicating that the PCR test failed to detect samples from persistently infected macaques. The prototype assay detected 56 of 58 (96.6%) human subjects diagnosed with clinical babesiosis by both PCR and IFA testing. Overall, the prototype anti-Babesia assay provides a highly sensitive and specific test for the diagnosis of B. microti infection. While PCR is preferred for detection of window-period parasitemia, antibody tests detect infected subjects during periods of low-level parasitemia.


Assuntos
Anticorpos Antiprotozoários/sangue , Babesia microti/isolamento & purificação , Babesiose/diagnóstico , Imunoensaio/normas , Parasitemia/diagnóstico , Animais , Anticorpos Antiprotozoários/imunologia , Babesia microti/genética , Babesia microti/imunologia , Modelos Animais de Doenças , Técnica Indireta de Fluorescência para Anticorpo/normas , Humanos , Imunoensaio/instrumentação , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Macaca , Programas de Rastreamento , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade , Soroconversão , Reação Transfusional/prevenção & controle
2.
Cell Host Microbe ; 23(3): 382-394.e5, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29544098

RESUMO

Hepatitis C virus (HCV) enters hepatocytes via various entry factors, including scavenger receptor BI (SR-B1), cluster of differentiation 81 (CD81), epidermal growth factor receptor (EGFR), claudin-1 (CLDN1), and occludin (OCLN). As CLDN1 and OCLN are not readily accessible due to their tight junctional localization, HCV likely accesses them by either disrupting cellular polarity or migrating to the tight junction. In this study, we image HCV entry into a three-dimensional polarized hepatoma system and reveal that the virus sequentially engages these entry factors through actin-dependent mechanisms. HCV initially localizes with the early entry factors SR-B1, CD81, and EGFR at the basolateral membrane and then accumulates at the tight junction in an actin-dependent manner. HCV associates with CLDN1 and then OCLN at the tight junction and is internalized via clathrin-mediated endocytosis by an active process requiring EGFR. Thus, HCV uses a dynamic and multi-step process to engage and enter host cells.


Assuntos
Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/virologia , Hepacivirus/fisiologia , Hepatite C/virologia , Imageamento Tridimensional/métodos , Organoides/diagnóstico por imagem , Organoides/metabolismo , Organoides/virologia , Internalização do Vírus , Actinas/metabolismo , Técnicas de Cultura de Células/métodos , Linhagem Celular , Membrana Celular/metabolismo , Sobrevivência Celular , Claudina-1/metabolismo , Endocitose/fisiologia , Receptores ErbB/metabolismo , Hepacivirus/patogenicidade , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Ocludina/metabolismo , Receptores Depuradores Classe B/metabolismo , Tetraspanina 28/metabolismo , Junções Íntimas/metabolismo , Proteínas não Estruturais Virais/metabolismo
3.
Traffic ; 9(9): 1458-70, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18564370

RESUMO

Axonal transport is essential for the successful establishment of neuroinvasive herpesvirus infections in peripheral ganglia (retrograde transport) and the subsequent spread to exposed body surfaces following reactivation from latency (anterograde transport). We examined two components of pseudorabies virus (US3 and UL13), both of which are protein kinases, as potential regulators of axon transport. Following replication of mutant viruses lacking kinase activity, newly assembled capsids displayed an increase in retrograde motion that prevented efficient delivery of capsids to the distal axon. The aberrant increase in retrograde motion was accompanied by loss of a viral membrane marker from the transported capsids, indicating that the viral kinases allow for efficient anterograde transport by stabilizing membrane-capsid interactions during the long transit from the neuron cell body to the distal axon.


Assuntos
Transporte Axonal , Axônios/virologia , Capsídeo/enzimologia , Herpesviridae , Proteínas Quinases/metabolismo , Células Receptoras Sensoriais/virologia , Animais , Axônios/metabolismo , Linhagem Celular , Embrião de Galinha , Células Epiteliais/virologia , Herpesviridae/enzimologia , Herpesviridae/genética , Herpesviridae/patogenicidade , Mutagênese , Proteínas Quinases/genética , Transporte Proteico , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA