Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 14560, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267289

RESUMO

Lipodystrophic mice are protected from cartilage damage following joint injury. This protection can be reversed by the implantation of a small adipose tissue graft. The purpose of this study was to evaluate the relationship between the gut microbiota and knee cartilage damage while controlling for adiposity, high fat diet, and joint injury using lipodystrophic (LD) mice. LD and littermate control (WT) mice were fed a high fat diet, chow diet, or were rescued with fat implantation, then challenged with destabilization of the medial meniscus surgery to induce osteoarthritis (OA). 16S rRNA sequencing was conducted on feces. MaAslin2 was used to determine associations between taxonomic relative abundance and OA severity. While serum LPS levels between groups were similar, synovial fluid LPS levels were increased in both limbs of HFD WT mice compared to all groups, except for fat transplanted animals. The Bacteroidetes:Firmicutes ratio of the gut microbiota was significantly reduced in HFD and OA-rescued animals when compared to chow. Nine novel significant associations were found between gut microbiota taxa and OA severity. These findings suggest the presence of causal relationships the gut microbiome and cartilage health, independent of diet or adiposity, providing potential therapeutic targets through manipulation of the microbiome.


Assuntos
Cartilagem/fisiopatologia , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/fisiologia , Osteoartrite/microbiologia , Adiposidade , Animais , Bacteroidetes/genética , Feminino , Firmicutes/genética , Microbioma Gastrointestinal/genética , Lipodistrofia/microbiologia , Lipopolissacarídeos/sangue , Masculino , Menisco/cirurgia , Camundongos Transgênicos , Obesidade/microbiologia , Osteoartrite/etiologia , RNA Ribossômico 16S/genética , Líquido Sinovial/metabolismo
2.
Acta Biomater ; 133: 74-86, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33823324

RESUMO

Immunoengineering continues to revolutionize healthcare, generating new approaches for treating previously intractable diseases, particularly in regard to cancer immunotherapy. In joint diseases, such as osteoarthritis (OA) and rheumatoid arthritis (RA), biomaterials and anti-cytokine treatments have previously been at that forefront of therapeutic innovation. However, while many of the existing anti-cytokine treatments are successful for a subset of patients, these treatments can also pose severe risks, adverse events and off-target effects due to continuous delivery at high dosages or a lack of disease-specific targets. The inadequacy of these current treatments has motivated the development of new immunoengineering strategies that offer safer and more efficacious alternative therapies through the precise and controlled targeting of specific upstream immune responses, including direct and mechanistically-driven immunoengineering approaches. Advances in the understanding of the immunomodulatory pathways involved in musculoskeletal disease, in combination with the growing emphasis on personalized medicine, stress the need for carefully considering the delivery strategies and therapeutic targets when designing therapeutics to better treat RA and OA. Here, we focus on recent advances in biomaterial and cell-based immunomodulation, in combination with genetic engineering, for therapeutic applications in joint diseases. The application of immunoengineering principles to the study of joint disease will not only help to elucidate the mechanisms of disease pathogenesis but will also generate novel disease-specific therapeutics by harnessing cellular and biomaterial responses. STATEMENT OF SIGNIFICANCE: It is now apparent that joint diseases such as osteoarthritis and rheumatoid arthritis involve the immune system at both local (i.e., within the joint) and systemic levels. In this regard, targeting the immune system using both biomaterial-based or cellular approaches may generate new joint-specific treatment strategies that are well-controlled, safe, and efficacious. In this review, we focus on recent advances in immunoengineering that leverage biomaterials and/or genetically engineered cells for therapeutic applications in joint diseases. The application of such approaches, especially synergistic strategies that target multiple immunoregulatory pathways, has the potential to revolutionize our understanding, treatment, and prevention of joint diseases.


Assuntos
Artrite Reumatoide , Osteoartrite , Artrite Reumatoide/terapia , Materiais Biocompatíveis , Humanos , Imunomodulação , Imunoterapia , Osteoartrite/terapia
3.
Sci Adv ; 6(19): eaaz7492, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32426485

RESUMO

Obesity-associated inflammation and loss of muscle function play critical roles in the development of osteoarthritis (OA); thus, therapies that target muscle tissue may provide novel approaches to restoring metabolic and biomechanical dysfunction associated with obesity. Follistatin (FST), a protein that binds myostatin and activin, may have the potential to enhance muscle formation while inhibiting inflammation. Here, we hypothesized that adeno-associated virus 9 (AAV9) delivery of FST enhances muscle formation and mitigates metabolic inflammation and knee OA caused by a high-fat diet in mice. AAV-mediated FST delivery exhibited decreased obesity-induced inflammatory adipokines and cytokines systemically and in the joint synovial fluid. Regardless of diet, mice receiving FST gene therapy were protected from post-traumatic OA and bone remodeling induced by joint injury. Together, these findings suggest that FST gene therapy may provide a multifactorial therapeutic approach for injury-induced OA and metabolic inflammation in obesity.


Assuntos
Dieta Hiperlipídica , Osteoartrite , Animais , Dieta Hiperlipídica/efeitos adversos , Folistatina/genética , Folistatina/metabolismo , Terapia Genética , Inflamação/metabolismo , Camundongos , Obesidade/complicações , Obesidade/genética , Osteoartrite/metabolismo
4.
J Sport Health Sci ; 9(2): 132-139, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32099721

RESUMO

Background: Osteoarthritis is one of the leading causes of pain and disability worldwide, and a large percentage of patients with osteoarthritis are individuals who are also obese. In recent years, a series of animal models have demonstrated that obesity-inducing diets can result in synovial joint damage (both with and without the superimposition of trauma), which may be related to changes in percentage of body fat and a series of low-level systemic inflammatory mediators. Of note, there is a disparity between whether the dietary challenges commence at weaning, representing a weanling onset, or at skeletal maturity, representing an adult onset of obesity. We wished to evaluate the effect of the dietary exposure time and the age at which animals are exposed to a high-fat and high-sucrose (HFS) diet to determine whether these factors may result in disparate outcomes, as there is evidence suggesting that these factors result in differential metabolic disturbances. Based on dietary exposure time, we hypothesized that rats fed an HFS diet for 14 weeks from weaning (HFS Weanling) would demonstrate an increase in knee joint damage scores, whereas rats exposed to the HFS diet for 4 weeks, starting at 12 weeks of age (HFS Adult) and rats exposed to a standard chow diet (Chow) would not display an increase in knee joint damage scores. Methods: Male Sprague-Dawley rats were fed either an HFS diet for 14 weeks from weaning (HFS Weanling) or an HFS diet for 4 weeks, starting at 12 weeks of age (HFS Adult). At sacrifice, joints were scored using the modified Mankin Criteria, and serum was analyzed for a defined subset of inflammatory markers (Interleukin-6, leptin, monocyte chemoattractant protein-1, and tumor necrosis factor α). Results: When the HFS Weanling and HFS Adult groups were compared, both groups had a similar percent of body fat, although the HFS Weanling group had a significantly greater body mass than the HFS Adult group. The HFS Weanling and HFS Adult animals had a significant increase in body mass and percentage of body fat when compared to the Chow group. Although knee joint damage scores were low in all 3 groups, we found, contrary to our hypothesis, that the HFS Adult group had statistically significant greater knee joint damage scores than the Chow and HFS Weanling groups. Furthermore, we observed that the HFS Weanling group did not have significant differences in knee joint damage scores relative to the Chow group. Conclusion: These findings indicate that the HFS Weanling animals were better able to cope with the dietary challenge of an HFS diet than the HFS Adult group. Interestingly, when assessing various serum proinflammatory markers, no significant differences were detected between the HFS Adult and HFS Weanling groups. Although details regarding the mechanisms underlying an increase in knee joint damage scores in the HFS Adult group remain to be elucidated, these findings indicate that dietary exposure time maybe less important than the age at which an HFS diet is introduced. Moreover, increases in serum proinflammatory mediators do not appear to be directly linked to knee joint damage scores in the HFS Weanling group animals but may be partially responsible for the observed knee joint damage in the adults over the very short time of exposure to the HFS diet.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Obesidade/complicações , Osteoartrite do Joelho/etiologia , Fatores Etários , Animais , Biomarcadores/sangue , Distribuição da Gordura Corporal , Índice de Massa Corporal , Citocinas/sangue , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/sangue , Masculino , Obesidade/etiologia , Obesidade/metabolismo , Osteoartrite do Joelho/patologia , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA