Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 44(3): 1067-85, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18672316

RESUMO

Enzymatic inhibition of histone deacetylase (HDAC) activity is emerging as an innovative and effective approach for the treatment of cancer. A series of novel amide derivatives have been synthesized and evaluated for their ability to inhibit human HDACs. Multiple compounds were identified as potent HDAC inhibitors (HDACi), with IC(50) values in the low nanomolar (nM) range against enzyme activity in HeLa cell extracts and sub-microM for their in vitro anti-proliferative effect on cell lines. The introduction of an unsaturated linking group between the terminal aryl ring and the amide moiety was the key to obtain good potency. This approach yielded compounds such as (E)-N-[6-(hydroxyamino)-6-oxohexyl]-3-(7-quinolinyl)-2-propenamide (27) (HDAC IC(50) 8 nM) which showed potent in vivo activity in the P388 mouse leukemia syngeneic model (an increased lifespan (ILS) of 111% was obtained).


Assuntos
Amidas/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Inibidores de Histona Desacetilases , Amidas/química , Inibidores Enzimáticos/química , Humanos , Espectroscopia de Ressonância Magnética , Relação Estrutura-Atividade
2.
Biochem J ; 409(2): 581-9, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17868033

RESUMO

The human HDAC (histone deacetylase) family, a well-validated anticancer target, plays a key role in the control of gene expression through regulation of transcription. While HDACs can be subdivided into three main classes, the class I, class II and class III HDACs (sirtuins), it is presently unclear whether inhibiting multiple HDACs using pan-HDAC inhibitors, or targeting specific isoforms that show aberrant levels in tumours, will prove more effective as an anticancer strategy in the clinic. To address the above issues, we have tested a number of clinically relevant HDACis (HDAC inhibitors) against a panel of rhHDAC (recombinant human HDAC) isoforms. Eight rhHDACs were expressed using a baculoviral system, and a Fluor de Lystrade mark (Biomol International) HDAC assay was optimized for each purified isoform. The potency and selectivity of ten HDACs on class I isoforms (rhHDAC1, rhHDAC2, rhHDAC3 and rhHDAC8) and class II HDAC isoforms (rhHDAC4, rhHDAC6, rhHDAC7 and rhHDAC9) was determined. MS-275 was HDAC1-selective, MGCD0103 was HDAC1- and HDAC2-selective, apicidin was HDAC2- and HDAC3-selective and valproic acid was a specific inhibitor of class I HDACs. The hydroxamic acid-derived compounds (trichostatin A, NVP-LAQ824, panobinostat, ITF2357, vorinostat and belinostat) were potent pan-HDAC inhibitors. The growth-inhibitory effect of the HDACis on HeLa cells showed that both pan-HDAC and class-I-specific inhibitors inhibited cell growth. The results also showed that both pan-HDAC and class-I-specific inhibitor treatment resulted in increased acetylation of histones, but only pan-HDAC inhibitor treatment resulted in increased tubulin acetylation, which is in agreement with their activity towards the HDAC6 isoform.


Assuntos
Inibidores Enzimáticos/farmacologia , Inibidores de Histona Desacetilases , Acetilação , Proliferação de Células , Clonagem Molecular , Inibidores Enzimáticos/metabolismo , Células HeLa , Histona Desacetilases/classificação , Histona Desacetilases/metabolismo , Humanos , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Cancer Chemother Pharmacol ; 60(2): 275-83, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17124594

RESUMO

PURPOSE: Histone deacetylase inhibitors (HDACi) inhibit the growth of cancer cells, and combinations of HDACi with established chemotherapeutics can lead to synergistic effects. We have investigated effects of PXD101 (HDACi in phase II clinical trials) in combination with 5-fluorouracil, on tumour cell proliferation and apoptosis both in vitro and in vivo. EXPERIMENTAL DESIGN: HCT116 cells were studied using proliferation and clonogenic assays. Synergistic inhibition of proliferation and clonogenicity was determined by incubation with PXD101 and 5-fluorouracil, and analysis using CalcuSyn software. The effect of combining PXD101 and 5-fluorouracil on apoptosis was examined in vitro using PARP-cleavage and TUNEL. Finally, the effectiveness of combining PXD101 and 5-fluorouracil in vivo was tested using both HT-29 and HCT116 xenograft models. RESULTS: Synergistic inhibition of proliferation and clonogenicity was obtained when HCT116 cells were incubated with PXD101 and 5-fluorouracil. 5-fluorouracil combined with PXD101 also increased DNA fragmentation and PARP cleavage in HCT116 cells. Incubation with PXD101 down regulated thymidylate synthase expression in HCT116 cells. In vivo studies, using mouse HT29 and HCT116 xenograft models, showed improved reductions in tumour volume compared to single compound, when PXD101 and 5-fluorouracil were combined. CONCLUSIONS: PXD101 and 5-fluorouracil synergistically combine in their anti-tumour effects against colon cancer cells in vitro and show enhanced activity when combined in vivo. Based on the results presented herein, a rationale for the use of PXD101 and 5-fluorouracil in combination in the clinic has been demonstrated.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Fluoruracila/farmacologia , Inibidores de Histona Desacetilases , Ácidos Hidroxâmicos/farmacologia , Neoplasias Experimentais/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Neoplasias Experimentais/patologia , Sulfonamidas , Ensaio Tumoral de Célula-Tronco/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA