Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38854130

RESUMO

Purpose: Inhibiting HMG-CoA reductase with simvastatin prevents breast cancer metastases in preclinical models and radiosensitizes monolayer and stem-like IBC cell lines in vitro . Given the extensive use of simvastatin worldwide and its expected penetration into the brain, we examined whether regulating cholesterol with simvastatin affected IBC3 HER2+ brain metastases. Methods and Materials: Breast cancer cell lines KPL4 and MDA-IBC3 were examined in vitro for DNA repair after radiation with or without statin treatment. Brain metastasis endpoints were examined in the MDA-IBC3 brain metastasis model after ex vivo exposure to lipoproteins and after tail vein injections with and without whole-brain radiotherapy (WBR) and oral statin exposure. Results: Ex vivo preculture of MDA-IBC3 cells with very low-density lipoprotein (vLDL) enhanced the growth of colonized lesions in the brain in vivo compared with control or high-density lipoprotein (HDL), and concurrent oral simvastatin/ WBR reduced the incidence of micrometastatic lesions evaluated 10 days after WBR. However, statin, with or without WBR, did not reduce the incidence, burden, or number of macrometastatic brain lesions evaluated 5 weeks after WBR. Conclusions: Although a role for cholesterol biosynthesis is demonstrated in DNA repair and response to whole brain radiation in this model, durable in vivo efficacy of concurrent whole brain irradiation and oral statin was not demonstrated.

2.
Heliyon ; 10(6): e27336, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38501015

RESUMO

Ovarian cancer (OC) is deadly, and likely arises from the fallopian tube epithelium (FTE). Despite the association of OC with ovulation, OC typically presents in post-menopausal women who are no longer ovulating. The goal of this study was to understand how ovulation and aging interact to impact OC progression from the FTE. Follicular fluid released during ovulation induces DNA damage in the FTE, however, the role of aging on FTE exposure to follicular fluid is unexplored. Follicular fluid samples were collected from 14 women and its effects on FTE cells was assessed. Follicular fluid caused DNA damage and lipid oxidation in an age-dependent manner, but instead induced cell proliferation in a dose-dependent manner, independent of age in FTE cells. Follicular fluid regardless of age disrupted FTE spheroid formation and stimulated attachment and growth on ultra-low attachment plates. Proteomics analysis of the adhesion proteins in the follicular fluid samples identified vitronectin, a glycoprotein responsible for FTE cell attachment and spreading.

3.
Cell Metab ; 35(11): 2060-2076.e9, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37852255

RESUMO

A high-fat diet (HFD) promotes metastasis through increased uptake of saturated fatty acids (SFAs). The fatty acid transporter CD36 has been implicated in this process, but a detailed understanding of CD36 function is lacking. During matrix detachment, endoplasmic reticulum (ER) stress reduces SCD1 protein, resulting in increased lipid saturation. Subsequently, CD36 is induced in a p38- and AMPK-dependent manner to promote preferential uptake of monounsaturated fatty acids (MUFAs), thereby maintaining a balance between SFAs and MUFAs. In attached cells, CD36 palmitoylation is required for MUFA uptake and protection from palmitate-induced lipotoxicity. In breast cancer mouse models, CD36-deficiency induced ER stress while diminishing the pro-metastatic effect of HFD, and only a palmitoylation-proficient CD36 rescued this effect. Finally, AMPK-deficient tumors have reduced CD36 expression and are metastatically impaired, but ectopic CD36 expression restores their metastatic potential. Our results suggest that, rather than facilitating HFD-driven tumorigenesis, CD36 plays a supportive role by preventing SFA-induced lipotoxicity.


Assuntos
Proteínas Quinases Ativadas por AMP , Ácidos Graxos Monoinsaturados , Animais , Camundongos , Ácidos Graxos Monoinsaturados/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Ácidos Graxos/metabolismo , Transporte Biológico , Homeostase
4.
Mol Cell Proteomics ; 22(7): 100590, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37301378

RESUMO

Ovarian cancer, a leading cause of cancer-related deaths among women, has been notoriously difficult to screen for and diagnose early, as early detection significantly improves survival. Researchers and clinicians seek routinely usable and noninvasive screening methods; however, available methods (i.e., biomarker screening) lack desirable sensitivity/specificity. The most fatal form, high-grade serous ovarian cancer, often originate in the fallopian tube; therefore, sampling from the vaginal environment provides more proximal sources for tumor detection. To address these shortcomings and leverage proximal sampling, we developed an untargeted mass spectrometry microprotein profiling method and identified cystatin A, which was validated in an animal model. To overcome the limits of detection inherent to mass spectrometry, we demonstrated that cystatin A is present at 100 pM concentrations using a label-free microtoroid resonator and translated our workflow to patient-derived clinical samples, highlighting the potential utility of early stage detection where biomarker levels would be low.


Assuntos
Detecção Precoce de Câncer , Neoplasias Ovarianas , Humanos , Animais , Feminino , Cistatina A , Neoplasias Ovarianas/metabolismo , Micropeptídeos
5.
J Am Soc Mass Spectrom ; 34(4): 668-675, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36920149

RESUMO

Niemann-Pick, type C (NPC) is a fatal, neurovisceral lysosomal storage disorder with progressive neurodegeneration and no FDA-approved therapy. Significant efforts have been focused on the development of therapeutic options, and 2-hydroxypropyl-ß-cyclodextrin (HP-b-CD) has emerged as a promising candidate. In cell culture, HP-b-CD ameliorates cholesterol storage in endo/lysosomes, a hallmark of the disorder. Furthermore, in animal studies, treatment with HP-b-CD delays neurodegeneration and extends lifespan. While HP-b-CD has been promising in vitro and in vivo, a clear understanding of the mechanism(s) of action is lacking. Utilizing a neuron-like cell culture model of SH-SY5Y differentiated cells and U18666A to induce the NPC phenotype, we report here a large-scale mass-spectrometry-based proteomic study to evaluate proteome changes upon treatment with these small molecules. In this study, we show that differentiated SH-SY5Y cells display morphological changes representative of neuronal-like cells along with increased levels of proliferation markers. Inhibition of the NPC cholesterol transporter 1 protein by U18666A resulted in increased levels of known NPC markers including SCARB2/LIMP2 and LAMP2. Finally, investigation of HP-b-CD treatment was performed where we observe that, although HP-b-CD reduces cholesterol storage, levels of NPC1 and NPC2 are not normalized to control levels. This finding further supports the need for a proteostasis strategy for NPC drug development. Moreover, proteins that were dysregulated in the U18666A model of NPC and normalized to control levels suggest that HP-b-CD promotes exocytosis in this neuron-like model. Utilizing state of the art mass spectrometry analysis, these data demonstrate newly reported changes with pharmacological perturbations related to NPC disease and provide insight into the mechanisms of HP-b-CD as a potential therapeutic.


Assuntos
Neuroblastoma , Doença de Niemann-Pick Tipo C , beta-Ciclodextrinas , Animais , Humanos , 2-Hidroxipropil-beta-Ciclodextrina/metabolismo , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , beta-Ciclodextrinas/farmacologia , beta-Ciclodextrinas/metabolismo , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Proteômica , Neuroblastoma/metabolismo , Neurônios , Colesterol
6.
Neoplasia ; 36: 100866, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36586182

RESUMO

High grade serous ovarian cancer (HGSC) arises from the fimbriated end of the fallopian tube epithelium (FTE), and in some cases, the ovarian surface epithelium (OSE). PAX8 is a commonly used biomarker for HGSC and is expressed in ∼90% of HGSC. Although the OSE does not express PAX8, murine models of HGSC derived from the OSE acquire PAX8, suggesting that it is not only a marker of Müllerian origin, but also an essential part of cancer progression, potentially from both the OSE and FTE. Previously, we have shown that PAX8 loss in HGSC cells causes tumor cell death and reduces cell migration and invasion. Herein, secretome analysis was performed in PAX8 deleted cells and we identified a reduction of the extracellular matrix (ECM) components, collagen and fibronectin. Immunoblotting and immunofluorescence in PAX8 deleted HGSC cells further validated the results from the secretome analysis. PAX8 loss reduced the amount of secreted TGFbeta, a cytokine that plays a crucial role in remodelling the tumor microenvironment. Furthermore, PAX8 loss reduced the integrity of 3D spheroids and caused a reduction of ECM proteins fibronectin and collagen in 3D cultures. Due to the ubiquitous nature of PAX8 in HGSC, regardless of cell origin, and the association of its reduced expression with decreasing tumor burden, a PAX8 inhibitor could be a promising drug target against various types of HGSC. To accomplish this, we generated a murine oviductal epithelial (MOE) cell line stably expressing PAX8 promoter-luciferase. Using this cell line, we performed a screening assay with a library of FDA-approved drugs (Prestwick Library) and quantitatively assessed these compounds for their inhibition of PAX8. We identified two hits: losartan and captropril, both inhibitors of the renin-angiotensin pathway that inhibit PAX8 expression and function. Overall, this study validates PAX8 as a regulator of ECM deposition in the tumor microenvironment.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Camundongos , Humanos , Animais , Feminino , Neoplasias Ovarianas/patologia , Fibronectinas/genética , Fibronectinas/metabolismo , Cistadenocarcinoma Seroso/patologia , Microambiente Tumoral , Secretoma , Fator de Transcrição PAX8/genética , Fator de Transcrição PAX8/metabolismo
7.
Front Cell Dev Biol ; 10: 1042734, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420136

RESUMO

High grade serous ovarian cancer (HGSOC), the most lethal histotype of ovarian cancer, frequently arises from fallopian tube epithelial cells (FTE). Once transformed, tumorigenic FTE often migrate specifically to the ovary, completing the crucial primary metastatic step and allowing the formation of the ovarian tumors after which HGSOC was originally named. As only the fimbriated distal ends of the fallopian tube that reside in close proximity to the ovary develop precursor lesions such as serous tubal intraepithelial carcinomas, this suggests that the process of transformation and primary metastasis to the ovary is impacted by the local microenvironment. We hypothesize that chemical cues, including small molecules and proteins, may help stimulate the migration of tumorigenic FTE to the ovary. However, the specific mediators of this process are still poorly understood, despite a recent growth in interest in the tumor microenvironment. Our previous work utilized imaging mass spectrometry (IMS) to identify the release of norepinephrine (NE) from the ovary in co-cultures of tumorigenic FTE cells with an ovarian explant. We predicted that tumorigenic FTE cells secreted a biomolecule, not produced or produced with low expression by non-tumorigenic cells, that stimulated the ovary to release NE. As such, we utilized an IMS mass-guided bioassay, using NE release as our biological marker, and bottom-up proteomics to demonstrate that a secreted protein, SPARC, is a factor produced by tumorigenic FTE responsible for enhancing release of ovarian NE and influencing primary metastasis of HGSOC. This discovery highlights the bidirectional interplay between different types of biomolecules in the fallopian tube and ovarian microenvironment and their combined roles in primary metastasis and disease progression.

8.
Int J Mol Sci ; 23(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35563028

RESUMO

Polycystic ovary syndrome (PCOS) is the most common endocrine and metabolic disorder in reproductive-aged women, and it typically involves elevated androgen levels. Recently, it has been reported that human bone marrow mesenchymal stem cells (hBM-MSCs) can regulate androgen synthesis pathways. However, the details of the mechanism are still unclear. hBM-MSC-derived secreted factors (the secretome) are promising sources of cell-based therapy as they consist of various types of proteins. It is thus important to know which proteins interact with disease-implicated biomolecules. This work aimed to investigate which secretome components contain the key factor that inhibits testosterone synthesis. In this study, we fractionated hBM-MSC-conditioned media into three fractions based on their molecular weights and found that, of the three fractions, one had the ability to inhibit the androgen-producing genes efficiently. We also analyzed the components of this fraction and established a protein profile of the hBM-MSC secretome, which was shown to inhibit androgen synthesis. Our study describes a set of protein components present in the hBM-MSC secretome that can be used therapeutically to treat PCOS by regulating androgen production for the first time.


Assuntos
Células-Tronco Mesenquimais , Síndrome do Ovário Policístico , Adulto , Androgênios/metabolismo , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Feminino , Humanos , Células-Tronco Mesenquimais/metabolismo , Síndrome do Ovário Policístico/metabolismo , Secretoma
9.
Cell Death Dis ; 13(1): 45, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013112

RESUMO

PHY34 is a synthetic small molecule, inspired by a compound naturally occurring in tropical plants of the Phyllanthus genus. PHY34 was developed to have potent in vitro and in vivo anticancer activity against high grade serous ovarian cancer (HGSOC) cells. Mechanistically, PHY34 induced apoptosis in ovarian cancer cells by late-stage autophagy inhibition. Furthermore, PHY34 significantly reduced tumor burden in a xenograft model of ovarian cancer. In order to identify its molecular target/s, we undertook an unbiased approach utilizing mass spectrometry-based chemoproteomics. Protein targets from the nucleocytoplasmic transport pathway were identified from the pulldown assay with the cellular apoptosis susceptibility (CAS) protein, also known as CSE1L, representing a likely candidate protein. A tumor microarray confirmed data from mRNA expression data in public databases that CAS expression was elevated in HGSOC and correlated with worse clinical outcomes. Overexpression of CAS reduced PHY34 induced apoptosis in ovarian cancer cells based on PARP cleavage and Annexin V staining. Compounds with a diphyllin structure similar to PHY34 have been shown to inhibit the ATP6V0A2 subunit of V(vacuolar)-ATPase. Therefore, ATP6V0A2 wild-type and ATP6V0A2 V823 mutant cell lines were tested with PHY34, and it was able to induce cell death in the wild-type at 246 pM while the mutant cells were resistant up to 55.46 nM. Overall, our data demonstrate that PHY34 is a promising small molecule for cancer therapy that targets the ATP6V0A2 subunit to induce autophagy inhibition while interacting with CAS and altering nuclear localization of proteins.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Núcleo Celular/metabolismo , Proteína de Suscetibilidade a Apoptose Celular/metabolismo , Cistadenocarcinoma Seroso/metabolismo , Neoplasias Ovarianas/metabolismo , ATPases Translocadoras de Prótons/antagonistas & inibidores , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proteína de Suscetibilidade a Apoptose Celular/genética , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/patologia , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Phyllanthus/química , Prognóstico
10.
J Proteome Res ; 20(9): 4258-4271, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34351155

RESUMO

Naked mole-rats (NMRs) are a long-lived animal that do not develop age-related diseases including neurodegeneration and cancer. Additionally, NMRs have a profound ability to consume reactive oxygen species (ROS) and survive long periods of oxygen deprivation. Here, we evaluated the unique proteome across selected brain regions of NMRs at different ages. Compared to mice, we observed numerous differentially expressed proteins related to altered mitochondrial function in all brain regions, suggesting that the mitochondria in NMRs may have adapted to compensate for energy demands associated with living in a harsh, underground environment. Keeping in mind that ROS can induce polyunsaturated fatty acid peroxidation under periods of neuronal stress, we investigated docosahexaenoic acid (DHA) and arachidonic acid (AA) peroxidation under oxygen-deprived conditions and observed that NMRs undergo DHA and AA peroxidation to a far less extent compared to mice. Further, our proteomic analysis also suggested enhanced peroxisome proliferator-activated receptor (PPAR)-retinoid X receptor (RXR) activation in NMRs via the PPARα-RXR and PPARγ-RXR complexes. Correspondingly, we present several lines of evidence supporting PPAR activation, including increased eicosapetenoic and omega-3 docosapentaenoic acid, as well as an upregulation of fatty acid-binding protein 3 and 4, known transporters of omega-3 fatty acids and PPAR activators. These results suggest enhanced PPARα and PPARγ signaling as a potential, innate neuroprotective mechanism in NMRs.


Assuntos
PPAR alfa , PPAR gama , Animais , Encéfalo , Camundongos , Ratos-Toupeira , Neuroproteção , Oxigênio , PPAR alfa/genética , PPAR gama/genética , Proteômica
11.
FEBS J ; 288(23): 6815-6827, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34233061

RESUMO

The Sigma-2 receptor (S2R) (a.k.a TMEM97) is an important endoplasmic reticular protein involved in cancer, cholesterol processing, cell migration, and neurodegenerative diseases, including Niemann-Pick Type C. While several S2R pharmacologic agents have been discovered, its recent (2017) cloning has limited biological investigation, and no endogenous ligands of the S2R are known. Histatins are a family of endogenous antimicrobial peptides that have numerous important effects in multiple biological systems, including antifungal, antibacterial, cancer pathogenesis, immunomodulation, and wound healing. Histatin-1 (Hst1) has important roles in epithelial wound healing and cell migration, and is the primary wound healing agent in saliva. Little is understood about the downstream machinery that underpins the effects of histatins, and no mammalian receptor is known to date. In this study, we show, using biophysical methods and functional assays, that Hst1 is an endogenous ligand for S2R and that S2R is a mammalian receptor for Hst1.


Assuntos
Membrana Celular/metabolismo , Histatinas/metabolismo , Ensaio Radioligante/métodos , Receptores sigma/metabolismo , Sequência de Aminoácidos , Movimento Celular , Células Cultivadas , Células Epiteliais/metabolismo , Epitélio Corneano/citologia , Células HEK293 , Células HeLa , Histatinas/genética , Humanos , Ligantes , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia Confocal , Ligação Proteica , Receptores sigma/genética
12.
Mol Ther ; 29(5): 1883-1902, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33508430

RESUMO

Neonatal AAV9-gene therapy of the lysosomal enzyme galactosylceramidase (GALC) significantly ameliorates central and peripheral neuropathology, prolongs survival, and largely normalizes motor deficits in Twitcher mice. Despite these therapeutic milestones, new observations identified the presence of multiple small focal demyelinating areas in the brain after 6-8 months. These lesions are in stark contrast to the diffuse, global demyelination that affects the brain of naive Twitcher mice. Late-onset lesions exhibited lysosomal alterations with reduced expression of GALC and increased psychosine levels. Furthermore, we found that lesions were closely associated with the extravasation of plasma fibrinogen and activation of the fibrinogen-BMP-SMAD-GFAP gliotic response. Extravasation of fibrinogen correlated with tight junction disruptions of the vasculature within the lesioned areas. The lesions were surrounded by normal appearing white matter. Our study shows that the dysregulation of therapeutic GALC was likely driven by the exhaustion of therapeutic AAV episomal DNA within the lesions, paralleling the presence of proliferating oligodendrocyte progenitors and glia. We believe that this is the first demonstration of diminishing expression in vivo from an AAV gene therapy vector with detrimental effects in the brain of a lysosomal storage disease animal model. The development of this phenotype linking localized loss of GALC activity with relapsing neuropathology in the adult brain of neonatally AAV-gene therapy-treated Twitcher mice identifies and alerts to possible late-onset reductions of AAV efficacy, with implications to other genetic leukodystrophies.


Assuntos
Galactosilceramidase/genética , Terapia Genética/métodos , Leucodistrofia de Células Globoides/patologia , Substância Branca/patologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Fibrinogênio/metabolismo , Galactosilceramidase/metabolismo , Vetores Genéticos/administração & dosagem , Leucodistrofia de Células Globoides/sangue , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/terapia , Masculino , Camundongos , Recidiva
13.
J Am Heart Assoc ; 9(7): e013583, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32204666

RESUMO

Background Brain repair mechanisms fail to promote recovery after stroke, and approaches to induce brain regeneration are scarce. Mesenchymal stem cells (MSC) are thought to be a promising therapeutic option. However, their efficacy is not fully elucidated, and the mechanism underlying their effect is not known. Methods and Results The middle cerebral artery occlusion model was utilized to determine the efficacy of interferon-γ-activated mesenchymal stem cells (aMSCγ) as an acute therapy for stroke. Here we show that treatment with aMSCγ is a more potent therapy for stroke than naive MSC. aMSCγ treatment results in significant functional recovery assessed by the modified neurological severity score and open-field analysis compared with vehicle-treated animals. aMSCγ-treated animals showed significant reductions in infarct size and inhibition of microglial activation. The aMSCγ treatment suppressed the hypoxia-induced microglial proinflammatory phenotype more effectively than treatment with naive MSC. Importantly, treatment with aMSCγ induced recruitment and differentiation of oligodendrocyte progenitor cells to myelin-producing oligodendrocytes in vivo. To elucidate the mechanism underlying high efficacy of aMSCγ therapy, we examined the secretome of aMSCγ and compared it to that of naive MSC. Intriguingly, we found that aMSCγ but not nMSC upregulated neuron-glia antigen 2, an important extracellular signal and a hallmark protein of oligodendrocyte progenitor cells. Conclusions These results suggest that activation of MSC with interferon-γ induces a potent proregenerative, promyelinating, and anti-inflammatory phenotype of these cells, which increases the potency of aMSCγ as an effective therapy for ischemic stroke.


Assuntos
Encéfalo/fisiopatologia , Infarto da Artéria Cerebral Média/cirurgia , Inflamação/prevenção & controle , Interferon gama/farmacologia , AVC Isquêmico/cirurgia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Neurogênese , Oligodendroglia/patologia , Animais , Comportamento Animal , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Inflamação/metabolismo , Inflamação/patologia , Inflamação/fisiopatologia , Mediadores da Inflamação/metabolismo , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , AVC Isquêmico/fisiopatologia , Células-Tronco Mesenquimais/metabolismo , Atividade Motora , Oligodendroglia/metabolismo , Teste de Campo Aberto , Ratos Sprague-Dawley , Recuperação de Função Fisiológica
14.
Expert Rev Proteomics ; 17(2): 99-107, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31996049

RESUMO

Introduction: The role of mass spectrometry in biomolecule analysis has become paramount over the last several decades ranging in the analysis across model systems and human specimens. Accordingly, the presence of mass spectrometers in clinical laboratories has also expanded alongside the number of researchers investigating the protein, lipid, and metabolite composition of an array of biospecimens. With this increase in the number of omic investigations, it is important to consider the entire experimental strategy from sample collection and storage, data collection and analysis.Areas covered: In this short review, we outline considerations for working with clinical (e.g. human) specimens including blood, urine, and cerebrospinal fluid, with emphasis on sample handling, profiling composition, targeted measurements and relevance to disease. Discussions of integrated genomic or transcriptomic datasets are not included. A brief commentary is also provided regarding new technologies with clinical relevance.Expert opinion: The role of mass spectrometry to investigate clinically related specimens is on the rise and the ability to integrate multiple omics datasets from mass spectrometry measurements will be crucial to further understanding human health and disease.


Assuntos
Espectrometria de Massas/métodos , Técnicas de Diagnóstico Molecular/métodos , Proteômica/métodos , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/urina , Humanos , Biópsia Líquida/métodos
15.
Proteomics ; 19(18): e1800285, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31394590

RESUMO

Niemann-Pick disease, type C1 (NPC1) is a fatal, autosomal recessive, neurodegenerative disorder caused by mutations in the NPC1 gene. As a result of the genetic defect, there is accumulation of unesterified cholesterol and sphingolipids in the late endosomal/lysosomal system causing both visceral and neurological defects. These manifest clinically as hepatosplenomegaly, liver dysfunction, and neurodegeneration. While significant progress has been made to better understand NPC1, the downstream effects of cholesterol storage and the major mechanisms that drive these pathologies remains less understood. In this study, it is sought to investigate free fatty acid levels in Npc1-/- mice with focus on the polyunsaturated ω-3 and ω-6 fatty acids. Since fatty acids are the main constituents of numerous lipids species, a discovery based lipidomic study of liver tissue in Npc1-/- mice is also performed. To this end, alterations in fatty acid synthesis, including the ω-3 and 6 fatty acids, are reported. Further, alterations in enzymes that regulate the synthesis of ω-3 and 6 fatty acids are reported. Analysis of the liver lipidome reveals alterations in both storage and membrane lipids including ceramides, fatty acids, phosphatidylcholamines, phosphatidylglycerols, phosphatidylethanolamines, sphingomyelins, and triacylglycerols in Npc1-/- mice at a late stage of disease.


Assuntos
Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Lipídeos/análise , Fígado/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Animais , Células Hep G2 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/metabolismo
16.
Oncogene ; 38(32): 6003-6016, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31296958

RESUMO

High grade serous ovarian cancer (HGSOC) is the fifth leading cause of cancer deaths among women yet effective targeted therapies against this disease are limited. The heterogeneity of HGSOC, including few shared oncogenic drivers and origination from both the fallopian tube epithelium (FTE) and ovarian surface epithelium (OSE), has hampered development of targeted drug therapies. PAX8 is a lineage-specific transcription factor expressed in the FTE that is also ubiquitously expressed in HGSOC where it is an important driver of proliferation, migration, and cell survival. PAX8 is not normally expressed in the OSE, but it is turned on after malignant transformation. In this study, we use proteomic and transcriptomic analysis to examine the role of PAX8 leading to increased migratory capabilities in a human ovarian cancer model, as well as in tumor models derived from the OSE and FTE. We find that PAX8 is a master regulator of migration with unique downstream transcriptional targets that are dependent on the cell's site of origin. Importantly, we show that targeting PAX8, either through CRISPR genomic alteration or through drug treatment with micelle encapsulated thiostrepton, leads to a reduction in tumor burden. These findings suggest PAX8 is a unifying protein driving metastasis in ovarian tumors that could be developed as an effective drug target to treat HGSOC derived from both the OSE and FTE.


Assuntos
Movimento Celular/genética , Cistadenocarcinoma Seroso/patologia , Neoplasias Ovarianas/patologia , Fator de Transcrição PAX8/fisiologia , Peritônio/patologia , Tioestreptona/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/genética , Composição de Medicamentos , Sistemas de Liberação de Medicamentos/métodos , Tubas Uterinas/patologia , Feminino , Perfilação da Expressão Gênica , Camundongos , Camundongos Nus , Micelas , Gradação de Tumores , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Fator de Transcrição PAX8/genética , Peritônio/efeitos dos fármacos , Peritônio/metabolismo , Proteoma/análise , Proteoma/metabolismo , Proteômica , Tioestreptona/administração & dosagem
17.
Analyst ; 143(17): 4147-4154, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30065998

RESUMO

In this study, we have evaluated a low field limit drift tube ion mobility device for ion mobility-mass spectrometry (IM-MS) measurements that uses nitrogen as a bath gas with electrospray ionization on a modified Q-TOF instrument. We have determined reduced mobility (K0) and collision cross section (CCS) values for a group of analyte ions that have been characterized previously in other drift tube IM-MS instruments. Our determinations of CCS for this set of ions as well as for standards are in agreement with published values. Because of their importance in biophysics and pharmaceuticals, we expanded our analysis to investigate the properties of cyclodextrins in this system. We present CCS data for both positively and negatively charged cyclodextrins and, for purposes of comparison, maltodextrose ions. Our results are the first reports of these materials as negative ions.

18.
J Proteome Res ; 14(10): 4169-78, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26288259

RESUMO

Protein quantification, identification, and abundance determination are important aspects of proteome characterization and are crucial in understanding biological mechanisms and human diseases. Different strategies are available to quantify proteins using mass spectrometric detection, and most are performed at the peptide level and include both targeted and untargeted methodologies. Discovery-based or untargeted approaches oftentimes use covalent tagging strategies (i.e., iTRAQ, TMT), where reporter ion signals collected in the tandem MS experiment are used for quantification. Herein we investigate the behavior of the iTRAQ 8-plex chemistry using MALDI-TOF/TOF instrumentation. The experimental design and data analysis approach described is simple and straightforward, which allows researchers to optimize data collection and proper analysis within a laboratory. iTRAQ reporter ion signals were normalized within each spectrum to remove peptide biases. An advantage of this approach is that missing reporter ion values can be accepted for purposes of protein identification and quantification without the need for ANOVA analysis. We investigate the distribution of reporter ion peak areas in an equimolar system and a mock biological system and provide recommendations for establishing fold-change cutoff values at the peptide level for iTRAQ data sets. These data provide a unique data set available to the community for informatics training and analysis.


Assuntos
Misturas Complexas/química , Peptídeos/análise , Proteoma/isolamento & purificação , Proteômica/métodos , Coloração e Rotulagem/métodos , Células Hep G2 , Humanos , Íons/química , Proteólise , Proteômica/instrumentação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Tripsina/química
19.
J Bacteriol ; 193(19): 5300-13, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21804006

RESUMO

Within the Burkholderia cepacia complex, B. cenocepacia is the most common species associated with aggressive infections in the lungs of cystic fibrosis patients, causing disease that is often refractive to treatment by antibiotics. Phage therapy may be a potential alternative form of treatment for these infections. Here we describe the genome of the previously described therapeutic B. cenocepacia podophage BcepIL02 and its close relative, Bcep22. Phage Bcep22 was found to contain a circularly permuted genome of 63,882 bp containing 77 genes; BcepIL02 was found to be 62,714 bp and contains 76 predicted genes. Major virion-associated proteins were identified by proteomic analysis. We propose that these phages comprise the founding members of a novel podophage lineage, the Bcep22-like phages. Among the interesting features of these phages are a series of tandemly repeated putative tail fiber genes that are similar to each other and also to one or more such genes in the other phages. Both phages also contain an extremely large (ca. 4,600-amino-acid), virion-associated, multidomain protein that accounts for over 20% of the phages' coding capacity, is widely distributed among other bacterial and phage genomes, and may be involved in facilitating DNA entry in both phage and other mobile DNA elements. The phages, which were previously presumed to be virulent, show evidence of a temperate lifestyle but are apparently unable to form stable lysogens in their hosts. This ambiguity complicates determination of a phage lifestyle, a key consideration in the selection of therapeutic phages.


Assuntos
Bacteriófagos/genética , Bacteriófagos/metabolismo , Burkholderia cenocepacia/virologia , Genoma Viral/genética , Bacteriófagos/ultraestrutura , Microscopia Eletrônica de Transmissão , Proteômica , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/genética , Vírion/metabolismo
20.
J Proteome Res ; 10(10): 4692-702, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21815628

RESUMO

The increase in adipose tissue mass arises in part from progressive lipid loading and triglyceride accumulation in adipocytes. Enlarged adipocytes produce the highest levels of pro-inflammatory molecules and reactive oxygen species (ROS). Since mitochondria are the site for major metabolic processes (e.g., TCA cycle) that govern the extent of triglyceride accumulation as well as the primary site of ROS generation, we quantitatively investigated changes in the adipocyte mitochondrial proteome during different stages of differentiation and enlargement. Mitochondrial proteins from 3T3-L1 adipocytes at different stages of lipid accumulation (days 0-18) were digested and labeled using the iTRAQ 8-plex kit. The labeled peptides were fractionated using a liquid phase isoelectric fractionation system (MSWIFT) to increase the depth of proteome coverage and analyzed using LC-MS/MS. A total of 631 proteins in the mitochondrial fraction, including endoplasmic reticulum-associated and golgi-related mitochondrial proteins, were identified and classified into 12 functional categories. A total of 123 proteins demonstrated a statistically significant change in expression in at least one of the time points over the course of the experiment. The identified proteins included enzymes and transporters involved in the TCA cycle, fatty acid oxidation, and ATP synthesis. Our results indicate that cultured adipocytes enter a state of metabolic-overdrive where increased flux through the TCA cycle and increased fatty acid oxidation occur simultaneously. The proteomic data also suggest that accumulation of reduced electron carriers and the resultant oxidative stress may be attractive targets for modulating adipocyte function in metabolic disorders.


Assuntos
Adipócitos/citologia , Mitocôndrias/metabolismo , Proteômica/métodos , Células 3T3-L1 , Trifosfato de Adenosina/metabolismo , Adipócitos/metabolismo , Animais , Diferenciação Celular , Crescimento Celular , Ciclo do Ácido Cítrico , Ácidos Graxos/metabolismo , Camundongos , Modelos Biológicos , Estresse Oxidativo , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA