Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Oncol ; 42(9): 1077-1087, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38113419

RESUMO

PURPOSE: About a third of patients with relapsed or refractory classic Hodgkin lymphoma (r/r CHL) succumb to their disease after high-dose chemotherapy followed by autologous stem-cell transplantation (HDC/ASCT). Here, we aimed to describe spatially resolved tumor microenvironment (TME) ecosystems to establish novel biomarkers associated with treatment failure in r/r CHL. PATIENTS AND METHODS: We performed imaging mass cytometry (IMC) on 71 paired primary diagnostic and relapse biopsies using a marker panel specific to CHL biology. For each cell type in the TME, we calculated a spatial score measuring the distance of nearest neighbor cells to the malignant Hodgkin Reed Sternberg cells within the close interaction range. Spatial scores were used as features in prognostic model development for post-ASCT outcomes. RESULTS: Highly multiplexed IMC data revealed shared TME patterns in paired diagnostic and early r/r CHL samples, whereas TME patterns were more divergent in pairs of diagnostic and late relapse samples. Integrated analysis of IMC and single-cell RNA sequencing data identified unique architecture defined by CXCR5+ Hodgkin and Reed Sternberg (HRS) cells and their strong spatial relationship with CXCL13+ macrophages in the TME. We developed a prognostic assay (RHL4S) using four spatially resolved parameters, CXCR5+ HRS cells, PD1+CD4+ T cells, CD68+ tumor-associated macrophages, and CXCR5+ B cells, which effectively separated patients into high-risk versus low-risk groups with significantly different post-ASCT outcomes. The RHL4S assay was validated in an independent r/r CHL cohort using a multicolor immunofluorescence assay. CONCLUSION: We identified the interaction of CXCR5+ HRS cells with ligand-expressing CXCL13+ macrophages as a prominent crosstalk axis in relapsed CHL. Harnessing this TME biology, we developed a novel prognostic model applicable to r/r CHL biopsies, RHL4S, opening new avenues for spatial biomarker development.


Assuntos
Doença de Hodgkin , Humanos , Doença de Hodgkin/tratamento farmacológico , Microambiente Tumoral , Ecossistema , Recidiva Local de Neoplasia , Resultado do Tratamento , Recidiva
2.
Clin Cancer Res ; 29(24): 5087-5103, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37812476

RESUMO

PURPOSE: Our preclinical studies showed that the oncolytic reovirus formulation pelareorep (PELA) has significant immunomodulatory anti-myeloma activity. We conducted an investigator-initiated clinical trial to evaluate PELA in combination with dexamethasone (Dex) and bortezomib (BZ) and define the tumor immune microenvironment (TiME) in patients with multiple myeloma treated with this regimen. PATIENTS AND METHODS: Patients with relapsed/refractory multiple myeloma (n = 14) were enrolled in a phase Ib clinical trial (ClinicalTrials.gov: NCT02514382) of three escalating PELA doses administered on Days 1, 2, 8, 9, 15, and 16. Patients received 40 mg Dex and 1.5 mg/m2 BZ on Days 1, 8, and 15. Cycles were repeated every 28 days. Pre- and posttreatment bone marrow specimens (IHC, n = 9; imaging mass cytometry, n = 6) and peripheral blood samples were collected for analysis (flow cytometry, n = 5; T-cell receptor clonality, n = 7; cytokine assay, n = 7). RESULTS: PELA/BZ/Dex was well-tolerated in all patients. Treatment-emergent toxicities were transient, and no dose-limiting toxicities occurred. Six (55%) of 11 response-evaluable patients showed decreased paraprotein. Treatment increased T and natural killer cell activation, inflammatory cytokine release, and programmed death-ligand 1 expression in bone marrow. Compared with nonresponders, responders had higher reovirus protein levels, increased cytotoxic T-cell infiltration posttreatment, cytotoxic T cells in significantly closer proximity to multiple myeloma cells, and larger populations of a novel immune-primed multiple myeloma phenotype (CD138+ IDO1+HLA-ABCHigh), indicating immunomodulation. CONCLUSIONS: PELA/BZ/Dex is well-tolerated and associated with anti-multiple myeloma activity in a subset of responding patients, characterized by immune reprogramming and TiME changes, warranting further investigation of PELA as an immunomodulator.


Assuntos
Mieloma Múltiplo , Terapia Viral Oncolítica , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/etiologia , Terapia Viral Oncolítica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Bortezomib/uso terapêutico , Dexametasona/uso terapêutico , Citocinas/uso terapêutico , Microambiente Tumoral
3.
Blood Adv ; 6(16): 4675-4690, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35675517

RESUMO

Multiplexed immune cell profiling of the tumor microenvironment (TME) in cancer has improved our understanding of cancer immunology, but complex spatial analyses of tumor-immune interactions in lymphoma are lacking. Here, we used imaging mass cytometry (IMC) on 33 cases of diffuse large B-cell lymphoma (DLBCL) to characterize tumor and immune cell architecture and correlate it to clinicopathological features such as cell of origin, gene mutations, and responsiveness to chemotherapy. To understand the poor response of DLBCL to immune checkpoint inhibitors (ICI), we compared our results to IMC data from Hodgkin lymphoma, a cancer highly responsive to ICI, and observed differences in the expression of PD-L1, PD-1, and TIM-3. We created a spatial classification of tumor cells and identified tumor-centric subregions of immune activation, immune suppression, and immune exclusion within the topology of DLBCL. Finally, the spatial analysis allowed us to identify markers such as CXCR3, which are associated with penetration of immune cells into immune desert regions, with important implications for engineered cellular therapies. This is the first study to integrate tumor mutational profiling, cell of origin classification, and multiplexed immuno-phenotyping of the TME into a spatial analysis of DLBCL at the single-cell level. We demonstrate that, far from being histopathologically monotonous, DLBCL has a complex tumor architecture, and that changes in tumor topology can be correlated with clinically relevant features. This analysis identifies candidate biomarkers and therapeutic targets such as TIM-3, CCR4, and CXCR3 that are relevant for combination treatment strategies in immuno-oncology and cellular therapies.


Assuntos
Doença de Hodgkin , Linfoma Difuso de Grandes Células B , Receptor Celular 2 do Vírus da Hepatite A , Humanos , Linfoma Difuso de Grandes Células B/patologia , Análise Espacial , Microambiente Tumoral/genética
4.
Br J Cancer ; 125(9): 1270-1284, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34455425

RESUMO

BACKGROUND: Individualising treatment in breast cancer requires effective predictive biomarkers. While relatively few genomic aberrations are clinically relevant, there is a need for characterising patients across different subtypes to identify actionable alterations. METHODS: We identified genomic alterations in 49 potentially actionable genes for which drugs are available either clinically or via clinical trials. We explored the landscape of mutations and copy number alterations (CNAs) in actionable genes in seven breast cancer subtypes utilising The Cancer Genome Atlas. To dissect the genomic complexity, we analysed the patterns of co-occurrence and mutual exclusivity in actionable genes. RESULTS: We found that >30% of tumours harboured putative actionable events that are targetable by currently available drugs. We identified genes that had multiple targetable alterations, representing candidate targets for combination therapy. Genes predicted to be drivers in primary breast tumours fell into five categories: mTOR pathway, immune checkpoints, oestrogen signalling, tumour suppression and DNA damage repair. Our analysis also revealed that CNAs in 34/49 (69%) and mutations in 13/49 (26%) genes were significantly associated with gene expression, validating copy number events as a dominant oncogenic mechanism in breast cancer. CONCLUSION: These results may enable the acceleration of personalised therapy and improve clinical outcomes in breast cancer.


Assuntos
Neoplasias da Mama/genética , Variações do Número de Cópias de DNA , Redes Reguladoras de Genes , Mutação , Adulto , Idoso , Idoso de 80 Anos ou mais , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Medicina de Precisão , Análise de Sequência de RNA , Sequenciamento do Exoma
5.
Cancer Discov ; 10(3): 406-421, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31857391

RESUMO

Hodgkin lymphoma is characterized by an extensively dominant tumor microenvironment (TME) composed of different types of noncancerous immune cells with rare malignant cells. Characterization of the cellular components and their spatial relationship is crucial to understanding cross-talk and therapeutic targeting in the TME. We performed single-cell RNA sequencing of more than 127,000 cells from 22 Hodgkin lymphoma tissue specimens and 5 reactive lymph nodes, profiling for the first time the phenotype of the Hodgkin lymphoma-specific immune microenvironment at single-cell resolution. Single-cell expression profiling identified a novel Hodgkin lymphoma-associated subset of T cells with prominent expression of the inhibitory receptor LAG3, and functional analyses established this LAG3+ T-cell population as a mediator of immunosuppression. Multiplexed spatial assessment of immune cells in the microenvironment also revealed increased LAG3+ T cells in the direct vicinity of MHC class II-deficient tumor cells. Our findings provide novel insights into TME biology and suggest new approaches to immune-checkpoint targeting in Hodgkin lymphoma. SIGNIFICANCE: We provide detailed functional and spatial characteristics of immune cells in classic Hodgkin lymphoma at single-cell resolution. Specifically, we identified a regulatory T-cell-like immunosuppressive subset of LAG3+ T cells contributing to the immune-escape phenotype. Our insights aid in the development of novel biomarkers and combination treatment strategies targeting immune checkpoints.See related commentary by Fisher and Oh, p. 342.This article is highlighted in the In This Issue feature, p. 327.


Assuntos
Doença de Hodgkin/genética , Análise de Célula Única , Transcriptoma/genética , Microambiente Tumoral/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Doença de Hodgkin/patologia , Humanos , Masculino , Análise de Sequência de RNA , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/patologia , Linfócitos T Reguladores/imunologia , Transcriptoma/imunologia , Microambiente Tumoral/imunologia
6.
Sci Rep ; 8(1): 16449, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30401833

RESUMO

Over half of the human genome is comprised of transposable elements (TE). Despite large-scale studies of the transcriptome in cancer, a comprehensive look at TE expression and its relationship to various mutations or prognosis has not been performed. We characterized the expression of TE in 178 adult acute myeloid leukemia (AML) patients using transcriptome data from The Cancer Genome Atlas. We characterized mutation specific dysregulation of TE expression using a multivariate linear model. We identified distinct patterns of TE expression associated with specific mutations and transcriptional networks. Genes regulating methylation was not associated with significant change in TE expression. Using an unpenalized cox regression analysis we identified a TE expression signature that predicted prognosis in AML. We identified 14 candidate prognostic TE transcripts (TEP) that classified AML as high/low-risk and this was independent of mutation-based and coding-gene expression based risk-stratification. TEP was able to predict prognosis in independent cohorts of 284 pediatric AML patients and 19 relapsed adult AML patients. This first comprehensive study of TE expression in AML demonstrates that TE expression can serve as a biomarker for prognosis in AML, and provides novel insights into the biology of AML. Studies characterizing its role in other cancers are warranted.


Assuntos
Elementos de DNA Transponíveis , Regulação Neoplásica da Expressão Gênica , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Mutação , Transcriptoma , Adulto , Perfilação da Expressão Gênica , Humanos , Prognóstico
7.
Exp Hematol Oncol ; 7: 13, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29796337

RESUMO

BACKGROUND: Aging is associated with complex molecular alterations at the cellular level. Bone marrow exhibits distinct phenotypic, genetic and epigenetic alterations with aging. Metabolic changes in the bone marrow related to aging have not been studied. METHODS: In this study, we characterized the metabolome and transcriptome of aging murine bone marrow and compared it with bone marrow from young healthy mice and chemotherapy treated mice; chemotherapy treatment is known to induce age-related changes in hematopoiesis. RESULTS: The metabolome of the aging bone marrow exhibited a signature of suppressed fatty-acid oxidation: accumulation of free fatty acids, reduced acyl-carnitines and low ß-hydroxy butyric acid. The aged bone marrow also exhibited a significant reduction in amino acid and nucleic acid pool. The transcriptome of the aging bone marrow revealed a signature of oxidative stress, known to be associated with mitochondrial dysfunction. Lastly, the metabolic and transcriptomic profiles of the bone marrow of chemotherapy treated mice did not show broad age-related changes but rather mostly resembled young healthy mice, suggestive of a lack of 'metabolic aging' with chemotherapy exposure. CONCLUSION: Our results revealed broad changes in lipids, amino acids, and nucleotides in aging marrow tissue. Together, these data provide a rich resource for the study of metabolic changes associated with aging in bone marrow.

8.
Exp Hematol ; 62: 33-38.e6, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29549053

RESUMO

Genomic transposable elements (TEs) constitute the majority of the genome. Expression of TEs is known to activate the double-stranded RNA recognition pathway ("viral mimicry"), leading to the activation of interferon-stimulated genes, inflammation, and immune-mediated cell death. Recently, we showed that the expression of TEs is suppressed along with immune pathways in leukemic stem cells (LSCs) in acute myeloid leukemia, suggesting a potential mechanism for immune escape of LSCs. This indicated that, during oncogenesis, where there is escape from senescence, expression of TEs is suppressed. Senescence is known to activate the interferon response and inflammatory cytokines, known as the senescence-associated secretory phenotype (SASP). We characterized the transcriptome of senescent and active human hematopoietic stem and progenitor cells (HSPCs) in vivo and showed co-occurrence of overexpression of TEs, SASP genes, and gene pathways of inflammation in senescence. The percentage of circulating senescent HSPCs (s-HSPCs) did not increase with age, indicating active clearance. Induction of senescence in human HSPCs in vitro showed increased expression of TE and SASP genes. SASP is known to mediate clearance of senescent cells and active clearance of senescent cells has been shown to increase organismal fitness. We speculate that the expression of TEs in s-HSPCs could contribute to orderly clearance of the cells via activation of immune pathways, warranting further mechanistic studies. This is the first study to characterize the transcriptome of human s-HSPCs in vivo, revealing activated expression of TEs and inflammatory genes.


Assuntos
Senescência Celular/genética , Citocinas/genética , Elementos de DNA Transponíveis/genética , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Adulto , Idoso , Citocinas/biossíntese , Feminino , Regulação da Expressão Gênica/imunologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Humanos , Inflamação , Interferons/biossíntese , Interferons/genética , Masculino , Pessoa de Meia-Idade , Mimetismo Molecular/imunologia , Transcriptoma , Regulação para Cima , Adulto Jovem
9.
Exp Hematol Oncol ; 7: 32, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30598855

RESUMO

Senescence, a state of permanent cell cycle arrest, can be induced by DNA damage. This process, which was initially described in fibroblasts, is now recognized to occur in stem cells. It has been well characterized in cell lines, but there is currently very limited data available on human senescence in vivo. We recently reported that the expression of transposable elements (TE), including endogenous retroviruses, was up-regulated along with inflammatory genes in human senescent hematopoietic stem and progenitor cells (HSPCs) in vivo. The mechanism of regulation of TE expression is not completely understood, but changes in DNA methylation and chromatin modifications are known to alter their expression. In order to elucidate the molecular mechanisms for TE up-regulation after senescence of HSPCs, we employed whole-genome bisulfite sequencing in paired senescent and active human HSPCs in vivo from healthy subjects. We found that the senescent HSPCs exhibited hypomethylated regions in the genome, which were enriched for TEs. This is the first report characterizing the methylome of senescent human HSPCs.

10.
Phys Med Biol ; 62(23): 8909-8923, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29035875

RESUMO

We describe a multichannel magnetoencephalography (MEG) system that uses optically pumped magnetometers (OPMs) to sense the magnetic fields of the human brain. The system consists of an array of 20 OPM channels conforming to the human subject's head, a person-sized magnetic shield containing the array and the human subject, a laser system to drive the OPM array, and various control and data acquisition systems. We conducted two MEG experiments: auditory evoked magnetic field and somatosensory evoked magnetic field, on three healthy male subjects, using both our OPM array and a 306-channel Elekta-Neuromag superconducting quantum interference device (SQUID) MEG system. The described OPM array measures the tangential components of the magnetic field as opposed to the radial component measured by most SQUID-based MEG systems. Herein, we compare the results of the OPM- and SQUID-based MEG systems on the auditory and somatosensory data recorded in the same individuals on both systems.


Assuntos
Magnetoencefalografia/instrumentação , Magnetometria/instrumentação , Fenômenos Ópticos , Adulto , Encéfalo/fisiologia , Humanos , Campos Magnéticos , Masculino
11.
Sci Rep ; 7(1): 7029, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28765607

RESUMO

Genomic transposable elements (TEs) comprise nearly half of the human genome. The expression of TEs is considered potentially hazardous, as it can lead to insertional mutagenesis and genomic instability. However, recent studies have revealed that TEs are involved in immune-mediated cell clearance. Hypomethylating agents can increase the expression of TEs in cancer cells, inducing 'viral mimicry', causing interferon signalling and cancer cell killing. To investigate the role of TEs in the pathogenesis of acute myeloid leukaemia (AML), we studied TE expression in several cell fractions of AML while tracking its development (pre-leukemic haematopoietic stem cells, leukemic stem cells [LSCs], and leukemic blasts). LSCs, which are resistant to chemotherapy and serve as reservoirs for relapse, showed significant suppression of TEs and interferon pathways. Similarly, high-risk cases of myelodysplastic syndrome (MDS) showed far greater suppression of TEs than low-risk cases. We propose TE suppression as a mechanism for immune escape in AML and MDS. Repression of TEs co-occurred with the upregulation of several genes known to modulate TE expression, such as RNA helicases and autophagy genes. Thus, we have identified potential pathways that can be targeted to activate cancer immunogenicity via TEs in AML and MDS.


Assuntos
Elementos de DNA Transponíveis , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/patologia , Leucemia Mieloide Aguda/patologia , Síndromes Mielodisplásicas/patologia , Humanos , Evasão da Resposta Imune
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA