Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Cancers (Basel) ; 15(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37173963

RESUMO

The interaction between tumor cells and activated fibroblasts determines malignant features of desmoplastic carcinomas such as rapid growth, progression towards a metastatic phenotype, and resistance to chemotherapy. On one hand, tumor cells can activate normal fibroblasts and even reprogram them into CAFs through complex mechanisms that also involve soluble factors. Among them, transforming growth factor beta (TGF-ß) and Platelet-Derived Growth Factor (PDGF) have an established role in the acquisition of pro-tumorigenic phenotypes by fibroblasts. On the other hand, activated fibroblasts release Interleukin-6 (IL-6), which increases tumor-cell invasiveness and chemoresistance. However, the interplay between breast cancer cells and fibroblasts, as well as the modes of action of TGF-ß, PDGF, and IL-6, are difficult to investigate in vivo. Here, we validated the usage of advanced cell culture models as tools to study the interplay between mammary tumor cells and fibroblasts, taking mouse and human triple-negative tumor cells and fibroblasts as a case study. We employed two different settings, one permitting only paracrine signaling, the other both paracrine and cell-contact-based signaling. These co-culture systems allowed us to unmask how TGF-ß, PDGF and IL-6 mediate the interplay between mammary tumor cells and fibroblasts. We found that the fibroblasts underwent activation induced by the TGF-ß and the PDGF produced by the tumor cells, which increased their proliferation and IL-6 secretion. The IL-6 secreted by activated fibroblasts enhanced tumor-cell proliferation and chemoresistance. These results show that these breast cancer avatars possess an unexpected high level of complexity, which resembles that observed in vivo. As such, advanced co-cultures provide a pathologically relevant tractable system to study the role of the TME in breast cancer progression with a reductionist approach.

2.
Pharmaceutics ; 14(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36559286

RESUMO

Exploring the potential of natural extracts for pharmaceutical applications in the treatment of different diseases is an emerging field of medical research, owing to the tremendous advantages that they can offer. These include compound sustainability due to the natural origin and virtually unlimited availability. In addition, they contribute to promoting the countries in which they are extracted and manufactured. For this reason, wild active compounds derived from plants are attracting increasing interest due to their beneficial properties. Among them, Avicennia marina has been recently recognized as a potential source of natural substances with therapeutic activities for anti-cancer treatment. A. marina beneficially supplies different chemical compounds, including cyclic triterpenoids, flavonoids, iridoids, naphtaquinones, polyphenols, polysaccharides, and steroids, most of them exhibiting potent antitumor activity. The in vivo and in vitro studies on different models of solid tumors demonstrated its dose-dependent activity. Moreover, the possibility to formulate the A. marina extracted molecules in nanoparticles allowed researchers to ameliorate the therapeutic outcome of treatments exploiting improved selectivity toward cancer cells, thus reducing the side effects due to nonspecific spread.

3.
Molecules ; 27(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36296711

RESUMO

In this study, superparamagnetic iron oxide nanoparticles (SPIONs) were engineered with an organic coating composed of low molecular weight heparin (LMWH) and bovine serum albumin (BSA), providing heparin-based nanoparticle systems (LMWH@SPIONs). The purpose was to merge the properties of the heparin skeleton and an inorganic core to build up a targeted theranostic nanosystem, which was eventually enhanced by loading a chemotherapeutic agent. Iron oxide cores were prepared via the co-precipitation of iron salts in an alkaline environment and oleic acid (OA) capping. Dopamine (DA) was covalently linked to BSA and LMWH by amide linkages via carbodiimide coupling. The following ligand exchange reaction between the DA-BSA/DA-LMWH and OA was conducted in a biphasic system composed of water and hexane, affording LMWH@SPIONs stabilized in water by polystyrene sulfonate (PSS). Their size and morphology were investigated via dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. The LMWH@SPIONs' cytotoxicity was tested, showing marginal or no toxicity for samples prepared with PSS at concentrations of 50 µg/mL. Their inhibitory activity on the heparanase enzyme was measured, showing an effective inhibition at concentrations comparable to G4000 (N-desulfo-N-acetyl heparin, a non-anticoagulant and antiheparanase heparin derivative; Roneparstat). The LMWH@SPION encapsulation of paclitaxel (PTX) enhanced the antitumor effect of this chemotherapeutic on breast cancer cells, likely due to an improved internalization of the nanoformulated drug with respect to the free molecule. Lastly, time-domain NMR (TD-NMR) experiments were conducted on LMWH@SPIONs obtaining relaxivity values within the same order of magnitude as currently used commercial contrast agents.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Nanopartículas de Magnetita/química , Soroalbumina Bovina , Hexanos , Meios de Contraste , Ácido Oleico , Medicina de Precisão , Ligantes , Heparina de Baixo Peso Molecular/farmacologia , Dopamina , Sais , Compostos Férricos/química , Nanopartículas/química , Heparina , Nanopartículas Magnéticas de Óxido de Ferro , Paclitaxel , Ferro , Água , Carbodi-Imidas , Amidas
4.
Pharmaceutics ; 14(7)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35890411

RESUMO

Ribosome-inactivating proteins, including Saporin toxin, have found application in the search for innovative alternative cancer therapies to conventional chemo- and radiotherapy. Saporin's main mechanism of action involves the inhibition of cytoplasmic protein synthesis. Its strong theoretical efficacy is counterbalanced by negligible cell uptake and diffusion into the cytosol. In this work, we demonstrate that by immobilizing Saporin on iron oxide nanoparticles coated with an amphiphilic polymer, which promotes nanoconjugate endosomal escape, a strong cytotoxic effect mediated by ribosomal functional inactivation can be achieved. Cancer cell death was mediated by apoptosis dependent on nanoparticle concentration but independent of surface ligand density. The cytotoxic activity of Saporin-conjugated colloidal nanoparticles proved to be selective against three different cancer cell lines in comparison with healthy fibroblasts.

5.
ACS Appl Bio Mater ; 4(11): 7800-7810, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34805780

RESUMO

Magnetic resonance imaging (MRI) is one of the most sophisticated diagnostic tools that is routinely used in clinical practice. Contrast agents (CAs) are commonly exploited to afford much clearer images of detectable organs and to reduce the risk of misdiagnosis caused by limited MRI sensitivity. Currently, only a few gadolinium-based CAs are approved for clinical use. Concerns about their toxicity remain, and their administration is approved only under strict controls. Here, we report the synthesis and validation of a manganese-based CA, namely, Mn@HFn-RT. Manganese is an endogenous paramagnetic metal able to produce a positive contrast like gadolinium, but it is thought to result in less toxicity for the human body. Mn ions were efficiently loaded inside the shell of a recombinant H-ferritin (HFn), which is selectively recognized by the majority of human cancer cells through their transferrin receptor 1. Mn@HFn-RT was characterized, showing excellent colloidal stability, superior relaxivity, and a good safety profile. In vitro experiments confirmed the ability of Mn@HFn-RT to efficiently and selectively target breast cancer cells. In vivo, Mn@HFn-RT allowed the direct detection of tumors by positive contrast enhancement in a breast cancer murine model, using very low metal dosages and exhibiting rapid clearance after diagnosis. Hence, Mn@HFn-RT is proposed as a promising CA candidate to be developed for MRI.


Assuntos
Antineoplásicos , Neoplasias da Mama , Animais , Apoferritinas , Neoplasias da Mama/diagnóstico por imagem , Meios de Contraste , Feminino , Gadolínio , Humanos , Imageamento por Ressonância Magnética/métodos , Manganês , Camundongos
6.
Nanomaterials (Basel) ; 11(6)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208275

RESUMO

Assessing the toxic effect in living organisms remains a major issue for the development of safe nanomedicines and exposure of researchers involved in the synthesis, handling and manipulation of nanoparticles. In this study, we demonstrate that Caenorhabditis elegans could represent an in vivo model alternative to superior mammalians for the collection of several physiological functionality parameters associated to both short-term and long-term effects of colloidally stable nanoparticles even in absence of microbial feeding, usually reported to be necessary to ensure appropriate intake. Contextually, we investigated the impact of surface charge on toxicity of superparamagnetic iron oxide coated with a wrapping polymeric envelop that confers them optimal colloidal stability. By finely tuning the functional group composition of this shallow polymer-obtaining totally anionic, partially pegylated, partially anionic and partially cationic, respectively-we showed that the ideal surface charge organization to optimize safety of colloidal nanoparticles is the one containing both cationic and anionic groups. Our results are in accordance with previous evidence that zwitterionic nanoparticles allow long circulation, favorable distribution in the tumor area and optimal tumor penetration and thus support the hypothesis that zwitterionic iron oxide nanoparticles could be an excellent solution for diagnostic imaging and therapeutic applications in nanooncology.

7.
Int J Nanomedicine ; 16: 1943-1960, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33727808

RESUMO

INTRODUCTION: The overexpression of Human Epidermal Growth Factor Receptor 2 (HER2) is usually associated with aggressive and infiltrating breast cancer (BC) phenotype, and metastases. Functionalized silica-based nanocarriers (SiNPs) can be labeled for in vivo imaging applications and loaded with chemotherapy drugs, making possible the simultaneous noninvasive diagnosis and treatment (theranostic) for HER2-positive BC. METHODS: Firstly, FITC-filled SiNPs, were engineered with two different amounts of Hc-TZ (trastuzumab half-chain) per single nanoparticle (1:2 and 1:8, SiNPs to Hc-TZ ratio), which was 99mTc-radiolabeled at histidine residues for ex vivo and in vivo biodistribution evaluations. Secondly, nanoparticles were loaded with DOX and their in vitro and ex vivo/in vivo delivery was assessed, in comparison with liposomal Doxorubicin (Caelyx). Finally, the treatment efficacy of DOX-SiNPs-TZ (1:8 Hc-TZ) was evaluated in vivo by PET and supported by MS-based proteomics profiling of tumors. RESULTS: SiNPs-TZ (1:8 Hc-TZ) tumor uptake was significantly greater than that of SiNPs-TZ (1:2 Hc-TZ) at 6 hours post-injection (p.i.) in ex vivo biodistribution experiment. At 24 h p.i., radioactivity values remained steady. Fluorescence microscopy, confirmed the presence of radiolabeled SiNPs-TZ (1:8 Hc-TZ) within tumor even at later times. SiNPs-TZ (1:8 Hc-TZ) nanoparticles loaded with Doxorubicin (DOX-SiNPs-TZ) showed a similar DOX delivery capability than Caelyx (at 6 h p.i.), in in vitro and ex vivo assays. Nevertheless, at the end of treatment, tumor volume was significantly reduced by DOX-SiNPs-TZ (1:8 Hc-TZ), compared to Caelyx and DOX-SiNPs treatment. Proteomics study identified 88 high stringent differentially expressed proteins comparing the three treatment groups with controls. CONCLUSION: These findings demonstrated a promising detection specificity and treatment efficacy for our system (SiNPs-TZ, 1:8 Hc-TZ), encouraging its potential use as a new theranostic agent for HER2-positive BC lesions. In addition, proteomic profile confirmed that a set of proteins, related to tumor aggressiveness, were positively affected by targeted nanoparticles.


Assuntos
Neoplasias da Mama/diagnóstico , Portadores de Fármacos/química , Nanopartículas/química , Compostos Radiofarmacêuticos/química , Receptor ErbB-2/metabolismo , Dióxido de Silício/química , Tecnécio/química , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Doxorrubicina/análogos & derivados , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Endocitose , Feminino , Fluoresceína-5-Isotiocianato/química , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polietilenoglicóis/uso terapêutico , Proteoma/metabolismo , Proteômica , Compostos Radiofarmacêuticos/farmacocinética , Tecnécio/farmacocinética , Distribuição Tecidual/efeitos dos fármacos , Tomografia Computadorizada de Emissão de Fóton Único , Resultado do Tratamento
8.
Biomater Sci ; 9(6): 2032-2042, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33544109

RESUMO

Brain cancers are a group of neoplasms that can be either primary, such as glioblastoma multiforme (GBM), or metastatic, such as the HER2+ breast cancer brain metastasis. The brain represents a sanctuary for cancer cells thanks to the presence of the blood brain barrier (BBB) that controls trafficking of molecules, protecting the brain from toxic substances including drugs. Considering that GBM and HER2+ breast cancer brain metastases are characterized by EGFR and HER2 over-expression respectively, CTX- and TZ-based treatment could be effective. Several studies show that these monoclonal antibodies (mAbs) exert both a cytostatic activity interfering with the transduction pathways of EGFR family and a cytotoxic activity mainly through the immune system activation via the antibody dependent cell-mediated cytotoxicity (ADCC). Since the major limitation to therapeutic mAbs application is the presence of the BBB, here we use a recombinant form of human apoferritin (HFn) as a nanovector to promote the delivery of mAbs to the brain for the activation of the ADCC response. Using a transwell model of the BBB we proved the crossing ability of HFn-mAb. Cellular uptake of HFn-mAb by human cerebral microvascular endothelial cells (hCMEC/D3) was demonstrated by confocal microscopy. Moreover, after crossing the endothelial monolayer, HFn-conjugated mAbs retain their biological activity against targets, as assessed by MTS and ADCC assays. Our data support the use of HFn as efficient carrier to enhance the BBB crossing of mAbs, without affecting their antitumoral activity.


Assuntos
Neoplasias Encefálicas , Nanopartículas , Apoferritinas , Barreira Hematoencefálica , Neoplasias Encefálicas/tratamento farmacológico , Células Endoteliais , Humanos
9.
Int J Nanomedicine ; 15: 8537-8552, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33173291

RESUMO

PURPOSE: Assessment of inflammatory bowel disease (IBD) currently relies on aspecific clinical signs of bowel inflammation. Specific imaging of the diseased bowel regions is still lacking. Here, we investigate mucosal addressin cell adhesion molecule 1 (MAdCAM-1) as a reliable and specific endothelial target for engineered nanoparticles delivering imaging agents to obtain an exact mapping of diseased bowel foci. MATERIALS AND METHODS: We generated a nanodevice composed of PLGA-PEG coupled with anti-MAdCAM-1 antibody half-chains and loaded with quantum dots (P@QD-MdC NPs). Bowel localization and systemic biodistribution of the nanoconjugate were analyzed upon injection in a murine model of chronic IBD obtained through repeated administration of dextran sulfate sodium salt. Specificity for diseased bowel regions was also assessed ex vivo in human specimens from patients with IBD. Potential for development as contrast agent in magnetic resonance imaging was assessed by preliminary study on animal model. RESULTS: Synthesized nanoparticles revealed good stability and monodispersity. Molecular targeting properties were analyzed in vitro in a cell culture model. Upon intravenous injection, P@QD-MdC NPs were localized in the bowel of colitic mice, with enhanced accumulation at 24 h post-injection compared to untargeted nanoparticles (p<0.05). Nanoparticles injection did not induce histologic lesions in non-target organs. Ex vivo exposure of human bowel specimens to P@QD-MdC NPs revealed specific recognition of the diseased regions vs uninvolved tracts (p<0.0001). After loading with appropriate contrast agent, the nanoparticles enabled localized contrast enhancement of bowel mucosa in the rectum of treated mice. CONCLUSION: P@QD-MdC NPs efficiently detected bowel inflammation foci, accurately following the expression pattern of MAdCAM-1. Fine-tuning of this nanoconjugate with appropriate imaging agents offers a promising non-invasive tool for specific IBD diagnosis.


Assuntos
Moléculas de Adesão Celular/imunologia , Imunoconjugados/administração & dosagem , Doenças Inflamatórias Intestinais/diagnóstico por imagem , Mucoproteínas/imunologia , Pontos Quânticos/administração & dosagem , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Colite/induzido quimicamente , Colite/diagnóstico por imagem , Doença de Crohn/diagnóstico por imagem , Modelos Animais de Doenças , Feminino , Humanos , Imunoconjugados/farmacocinética , Injeções Intravenosas , Mucosa Intestinal/diagnóstico por imagem , Intestinos/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Nanopartículas/química , Poliésteres/química , Polietilenoglicóis/química , Distribuição Tecidual
10.
Small ; 16(39): e2001450, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32856404

RESUMO

The identification of a highly sensitive method to check the delivery of administered nanodrugs into the tumor cells is a crucial step of preclinical studies aimed to develop new nanoformulated cures, since it allows the real therapeutic potential of these devices to be forecast. In the present work, the ability of an H-ferritin (HFn) nanocage, already investigated as a powerful tool for cancer therapy thanks to its ability to actively interact with the transferrin receptor 1, to act as an efficient probe for the monitoring of nanodrug delivery to tumors is demonstrated. The final formulation is a bioluminescent nanoparticle, where the luciferin probe is conjugated on nanoparticle surface by means of a disulfide containing linker (Luc-linker@HFn) which is subjected to glutathione-induced cyclization in tumor cell cytoplasm. The prolonged imaging of luciferase+ tumor models, demonstrated by an in vitro and an in vivo approach, associated with the prolonged release of luciferin into cancer cells by disulfide bridge reduction, clearly indicates the high efficiency of Luc-linker@HFn for drug delivery to the tumor tissues.


Assuntos
Apoferritinas , Sistemas de Liberação de Medicamentos , Nanopartículas , Neoplasias , Apoferritinas/química , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Humanos , Nanopartículas/química , Neoplasias/tratamento farmacológico
11.
Nanomaterials (Basel) ; 10(6)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32516931

RESUMO

Nowadays, magnetic resonance imaging (MRI) is one of the key, noninvasive modalities to detect and stage cancer which benefits from contrast agents (CA) to differentiate healthy from tumor tissue. An innovative class of MRI CAs is represented by Gd-loaded gold nanoparticles. The size, shape and chemical functionalization of Gd-loaded gold nanoparticles appear to affect the observed relaxation enhancement of water protons in their suspensions. The herein reported results shed more light on the determinants of the relaxation enhancement brought by Gd-loaded concave cube gold nanoparticles (CCGNPs). It has been found that, in the case of nanoparticles endowed with concave surfaces, the relaxivity is remarkably higher compared to the corresponding spherical (i.e., convex) gold nanoparticles (SPhGNPs). The main determinant for the observed relaxation enhancement is represented by the occurrence of a large contribution from second sphere water molecules which can be exploited in the design of high-efficiency MRI CA.

12.
J Colloid Interface Sci ; 579: 186-194, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32590159

RESUMO

Colloidally stable nanoparticles-based magnetic agents endowed with very high relaxivity and specific absorption rate are extremely desirable for efficient magnetic resonance imaging and magnetic hyperthermia, respectively. Here, we report a water dispersible magnetic agent consisting of zinc-doped superparamagnetic iron oxide nanoparticles (i.e., Zn-SPIONs) of 15 nm size with high saturation magnetization coated with an amphiphilic polymer for effective magnetic resonance imaging and magnetic hyperthermia of glioblastoma cells. These biocompatible polymer-coated Zn-SPIONs had 24 nm hydrodynamic diameter and exhibited high colloidal stability in various aqueous media, very high transverse relaxivity of 471 mM-1 s-1, and specific absorption rate up to 743.8 W g-1, which perform better than most iron oxide nanoparticles reported in the literature, including commercially available agents. Therefore, using these polymer-coated Zn-SPIONs even at low concentrations, T2-weighted magnetic resonance imaging and moderate magnetic hyperthermia of glioblastoma cells under clinically relevant magnetic field were successfully implemented. In addition, the results of this in vitro study suggest the superior potential of Zn-SPIONs as a theranostic nanosystem for brain cancer treatment, simultaneously acting as a contrast agent for magnetic resonance imaging and a heat mediator for localized magnetic hyperthermia.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Meios de Contraste , Humanos , Hipertermia , Nanopartículas Magnéticas de Óxido de Ferro , Imageamento por Ressonância Magnética , Polímeros , Zinco
13.
Pharmaceutics ; 11(12)2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817781

RESUMO

One of the goals of the pharmaceutical sciences is the amelioration of targeted drug delivery. In this context, nanocarrier-dependent transportation represents an ideal method for confronting a broad range of human disorders. In this study, we investigated the possibility of improving the selective release of the anti-cancer drug paclitaxel (PTX) in the gastro-intestinal tract by encapsulating it into the biodegradable nanoparticles made by FDA-approved poly(lactic-co-glycolic acid) (PLGA) and coated with polyethylene glycol to improve their stability (PLGA-PEG-NPs). Our study was performed by combining the synthesis and characterization of the nanodrug with in vivo studies of pharmacokinetics after oral administration in mice. Moreover, fluorescent PLGA-nanoparticles (NPs), were tested both in vitro and in vivo to observe their fate and biodistribution. Our study demonstrated that PLGA-NPs: (1) are stable in the gastric tract; (2) can easily penetrate inside carcinoma colon 2 (CaCo2) cells; (3) reduce the PTX absorption from the gastrointestinal tract, further limiting systemic exposure; (4) enable PTX local targeting. At present, the oral administration of biodegradable nanocarriers is limited because of stomach degradation and the sink effect played by the duodenum. Our findings, however, exhibit promising evidence towards our overcoming these limitations for a more specific and safer strategy against gastrointestinal disorders.

14.
Cancers (Basel) ; 11(12)2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31769416

RESUMO

Starting with the enhanced permeability and retention (EPR) effect discovery, nanomedicine has gained a crucial role in cancer treatment. The advances in the field have led to the approval of nanodrugs with improved safety profile and still inspire the ongoing investigations. However, several restrictions, such as high manufacturing costs, technical challenges, and effectiveness below expectations, raised skeptical opinions within the scientific community about the clinical relevance of nanomedicine. In this review, we aim to give an overall vision of the current hurdles encountered by nanotherapeutics along with their design, development, and translation, and we offer a prospective view on possible strategies to overcome such limitations.

16.
Trends Biotechnol ; 37(9): 995-1010, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30862388

RESUMO

The integration of multiple imaging and therapeutic agents into a customizable nanoplatform for accurate identification and rapid prevention of cancer is attracting great attention. Among the available theranostic nanosystems, magnetic gold nanoparticles are particularly promising as they exhibit unique physicochemical properties that can support multiple functions, including cancer diagnosis by magnetic resonance imaging, X-ray computed tomography, Raman and photoacoustic imaging, drug delivery, and plasmonic photothermal and photodynamic therapies. This review gives an overview of recent advances in the fabrication of multifunctional gold nanohybrids with magnetic and optical properties and their successful demonstration in multimodal imaging and therapy of cancer. Concerns around toxicity of these nanomaterials are also discussed in view of an imminent transition to clinical practice.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Ouro/química , Nanopartículas Metálicas/química , Neoplasias/tratamento farmacológico , Humanos
17.
Int J Nanomedicine ; 14: 773-785, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30774332

RESUMO

PURPOSE: Malignant pleural mesothelioma (MPM) is an aggressive tumor characterized by poor prognosis. Its incidence is steadily increasing due to widespread asbestos exposure. There is still no effective therapy for MPM. Pemetrexed (Pe) is one of the few chemotherapeutic agents approved for advanced-stage disease, although the objective response to the drug is limited. The use of gold nanoparticles (GNPs) as a drug delivery system promises several advantages, including specific targeting of malignant cells, with increased intracellular drug accumulation and reduced systemic toxicity, and, in the case of MPM, direct treatment administration into the pleural space. This study aims at exploring CD146 as a potential MPM cell-specific target for engineered Pe-loaded GNPs and to assess their effectiveness in inhibiting MPM cell line growth. METHODS: MPM cell lines and primary cultures obtained by pleural effusions from MPM patients were assayed for CD146 expression by flow cytometry. Internalization by MPM cell lines of fluorescent dye-marked GNPs decorated with a monoclonal anti CD146 coated GNPs (GNP-HC) was proven by confocal microscopy. The effects of anti CD146 coated GNPs loaded with Pe (GNP-HCPe) on MPM cell lines were evaluated by cell cycle (flow cytometry), viability (MTT test), clonogenic capacity (soft agar assay), ROS production (electric paramagnetic resonance), motility (wound healing assay), and apoptosis (flow cytometry). RESULTS: GNP-HC were selectively uptaken by MPM cells within 1 hour. MPM cell lines were blocked in the S cell cycle phase in the presence of GNP-HCPe. Both cell viability and motility were significantly affected by nanoparticle treatment compared to Pe. Apoptotic rate and ROS production were significantly higher in the presence of nanoparticles. Clonogenic capacity was completely inhibited following nanoparticle internalization. CONCLUSION: GNP-HCPe treatment displays in vitro antineoplastic action and is more effective than Pe alone in inhibiting MPM cell line malignant phenotype. The innovative use of specifically targeted GNPs opens the perspective of local intrapleural administration to avoid normal cell toxicity and enhance chemotherapy efficacy.


Assuntos
Neoplasias Pulmonares/tratamento farmacológico , Mesotelioma/tratamento farmacológico , Nanopartículas Metálicas/química , Pemetrexede/uso terapêutico , Neoplasias Pleurais/tratamento farmacológico , Apoptose/efeitos dos fármacos , Biópsia , Antígeno CD146/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Ouro/química , Humanos , Neoplasias Pulmonares/patologia , Mesotelioma/patologia , Mesotelioma Maligno , Pemetrexede/farmacologia , Neoplasias Pleurais/patologia , Espécies Reativas de Oxigênio/metabolismo
18.
Colloids Surf B Biointerfaces ; 174: 42-55, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30428431

RESUMO

Recently, magnetic fluid hyperthermia using biocompatible magnetic nanoparticles as heat mediators for cancer therapy has been extensively investigated due to its high efficiency and limited side effects. However, the development of more efficient heat nanomediators that exhibit very high specific absorption rate (SAR) value is essential for clinical application to overcome the several restrictions previously encountered due to the large quantity of nanomaterial required for effective treatment. In this review, we focus on the current progress in the development of magnetic nanoparticles based hyperthermia therapy as well as combined therapy harnessing hyperthermia with heat-mediated drug delivery for cancer treatment. We also address the fundamental principles of magnetic hyperthermia, basics of magnetism including the effect of several parameters on heating capacity, synthetic methods and nanoparticle surface chemistry needed to design and develop an ideal magnetic nanoparticle heat mediator suitable for clinical translation in cancer therapy.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita/administração & dosagem , Neoplasias/terapia , Animais , Humanos , Nanopartículas de Magnetita/química
19.
Bioconjug Chem ; 29(11): 3817-3832, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30350574

RESUMO

The use of therapeutic monoclonal antibodies (mAbs) has revolutionized cancer treatment. The conjugation of mAbs to nanoparticles has been broadly exploited to improve the targeting efficiency of drug nanocarriers taking advantage of high binding efficacy and target selectivity of antibodies for specific cell receptors. However, the therapeutic implications of nanoconjugation have been poorly considered. In this study, half-chain fragments of the anti-EGFR mAb cetuximab were conjugated to colloidal nanoparticles originating stable nanoconjugates that were investigated as surrogates of therapeutic mAbs in triple negative breast cancer (TNBC). Three TNBC cell lines were selected according to EGFR expression, which regulates activation of MAPK/ERK and PI3K/Akt pathways, and to distinctive molecular profiling including KRAS, PTEN, and BRCA1 mutations normally associated with diverse sensitivity to treatment with cetuximab. The molecular mechanisms of action of nanoconjugated half-chain mAb, including cell targeting, interference with downstream signaling pathways, proliferation, cell cycle, and apoptosis, along with triggering of ADCC response, were investigated in detail in sensitive and resistant TNBC cells. We found that half-chain mAb nanoconjugation was able to enhance the therapeutic efficacy and improve the target selectivity against sensitive, but unexpectedly also resistant, TNBC cells. Viability assays and signaling transduction modulation suggested a role of BRCA1 mutation in TNBC resistance to cetuximab alone, whereas its effect could be circumvented using half-chain cetuximab nanoconjugates, suggesting that nanoconjugation not only improved the antibody activity but also exerted different mechanisms of action. Our results provide robust evidence of the potential of half-chain antibody nanoconjugates in the treatment of TNBC, which could offer a new paradigm for therapeutic antibody administration, potentially allowing improved curative efficiency and reduced minimal effective dosages in both sensitive and resistant tumors.


Assuntos
Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacologia , Cetuximab/química , Cetuximab/farmacologia , Nanoconjugados/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos Imunológicos/farmacocinética , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cetuximab/farmacocinética , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/metabolismo
20.
Biochim Biophys Acta Gen Subj ; 1862(10): 2254-2260, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30036602

RESUMO

BACKGROUND: Vaults are eukaryotic ribonucleoprotein particles composed of up 78 copies of the 97 kDa major vault protein that assembles into a barrel-like, "nanocapsule" enclosing poly(ADP-ribose) polymerase, telomerase-associated protein-1 and small untranslated RNAs. Overall, the molecular mass of vault particles amounts to about 13 MDa. Although it has been implicated in several cellular functions, its physiological roles remain poorly understood. Also, the possibility to exploit it as a nanovector for drug delivery is currently being explored in several laboratories. METHODS: Using the baculovirus expression system, vaults were expressed and purified by a dialysis step using a 1 MDa molecular weight cutoff membrane and a subsequent size exclusion chromatography. Purity was assessed by SDS-PAGE, transmission electron microscopy and dynamic light scattering. Particle's endocytic uptake was monitored by flow cytometry and confocal microscopy. RESULTS: The purification protocol here reported is far simpler and faster than those currently available and lead to the production of authentic vault. We then demonstrated its clathrin-mediated endocytic uptake by normal fibroblast and glioblastoma, but not carcinoma cell lines. In contrast, no significant caveolin-mediated endocytosis was detected. CONCLUSIONS: These results provide the first evidence for an intrinsic propensity of the vault complex to undergo endocytic uptake cultured eukaryotic cells. GENERAL SIGNIFICANCE: The newly developed purification procedure will greatly facilitate any investigation based on the use of the vault particle as a natural nanocarrier. Its clathrin-mediated endocytic uptake observed in normal and in some tumor cell lines sheds light on its physiological role.


Assuntos
Endocitose/fisiologia , Fibroblastos/citologia , Glioblastoma/metabolismo , Nanopartículas/administração & dosagem , Partículas de Ribonucleoproteínas em Forma de Abóbada/química , Partículas de Ribonucleoproteínas em Forma de Abóbada/metabolismo , Animais , Células Cultivadas , Sistemas de Liberação de Medicamentos , Endocitose/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Glioblastoma/patologia , Humanos , Nanopartículas/química , Transdução de Sinais , Spodoptera
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA