Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 85: 104302, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36206624

RESUMO

BACKGROUND: Adipose tissue is a source of multiple factors that modulate systemic insulin sensitivity and cardiovascular risk. Taurine is obtained from the diet but it is less known that it is endogenously synthesized by cysteine dioxygenase type 1 (CDO1). CDO1 exerts a role in adipose tissue from rodent models, but the potential translational value in humans is not available in the literature. METHODS: CDO1 gene expression was analysed in visceral and subcutaneous adipose tissue samples in association with metabolic traits in participants with different degrees of obesity in four independent cohorts. CDO1 was also evaluated in isolated human adipocytes in vitro. Mechanistically, CDO1gene knockdown (KD) of human preadipocytes and adipose-derived mesenchymal stem cells (ASC52telo) (using lentiviral particles) was also evaluated. Mitochondrial respiratory function of adipocytes was evaluated using Seahorse. FINDINGS: Both visceral (VAT) and subcutaneous adipose tissue (SAT) CDO1 mRNA was associated with gene expression markers of adipose tissue function in the four cohorts. Higher CDO1 expression was linked to decreased fasting triglycerides and blood HbA1c even after adjusting by age, BMI and sex. In addition, CDO1 mRNA positively correlated with the expression of genes involved in adipogenesis and negatively with different inflammatory markers. Both VAT and SAT CDO1 mRNA was mainly expressed in adipocytes and significantly increased during adipocyte differentiation, but attenuated under inflammatory conditions. Mechanistically, CDO1 gene KD reduced taurine biosynthesis, evidencing lower CDO1 activity. In both human preadipocytes and ASC52telo cells, CDO1 gene KD resulted in decreased gene expression markers of adipogenesis (ADIPOQ, FABP4, FASN, SLC2A4, CEBPA) and increased inflammatory genes (TNF and IL6) during adipocyte differentiation. Of note, CDO1 gene KD led to decreased mitochondrial respiratory function in parallel to decreased expression of mitochondrial function-, but not biogenesis-related genes. INTERPRETATION: Current findings show the relevance of CDO1 in adipose tissue physiology, suggesting its contribution to an improved systemic metabolic profile. FUNDING: This work was partially supported by research grants PI16/01173, PI19/01712, PI20/01090 and PI21/01361 from the Instituto de Salud Carlos III from Spain, Fondo Europeo de Desarrollo Regional (FEDER) funds, and VII Spanish Diabetes Association grants to Basic Diabetes Research Projects led by young researchers.


Assuntos
Tecido Adiposo , Cisteína Dioxigenase , Humanos , Adipogenia/genética , Tecido Adiposo/metabolismo , Anti-Inflamatórios/metabolismo , Células Cultivadas , Cisteína Dioxigenase/genética , Cisteína Dioxigenase/metabolismo , RNA Mensageiro/genética , Taurina/metabolismo
2.
Biomed Pharmacother ; 151: 113156, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35643066

RESUMO

BACKGROUND AND AIMS: The sexual dimorphism in fat-mass distribution and circulating leptin and insulin levels is well known, influencing the progression of obesity-associated metabolic disease. Here, we aimed to investigate the possible role of lipopolysaccharide-binding protein (LBP) in this sexual dimorphism. METHODS: The relationship between plasma LBP and fat mass was evaluated in 145 subjects. The effects of Lbp downregulation, using lipid encapsulated unlocked nucleomonomer agent containing chemically modified-siRNA delivery system, were evaluated in mice. RESULTS: Plasma LBP levels were associated with fat mass and leptin levels in women with obesity, but not in men with obesity. In mice, plasma LBP downregulation led to reduced weight, fat mass and leptin gain after a high-fat and high-sucrose diet (HFHS) in females, in parallel to increased expression of adipogenic and thermogenic genes in visceral adipose tissue. This was not observed in males. Plasma LBP downregulation avoided the increase in serum LPS levels in HFHS-fed male and female mice. Serum LPS levels were positively correlated with body weight and fat mass gain, and negatively with markers of adipose tissue function only in female mice. The sexually dimorphic effects were replicated in mice with established obesity. Of note, LBP downregulation led to recovery of estrogen receptor alpha (Esr1) mRNA levels in females but not in males. CONCLUSION: LBP seems to exert a negative feedback on ERα-mediated estrogen action, impacting on genes involved in thermogenesis. The known decreased estrogen action and negative effects of metabolic endotoxemia may be targeted through LBP downregulation.


Assuntos
Leptina , Lipopolissacarídeos , Proteínas de Fase Aguda , Tecido Adiposo , Animais , Proteínas de Transporte , Dieta Hiperlipídica , Regulação para Baixo , Estrogênios/metabolismo , Feminino , Humanos , Leptina/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Glicoproteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo
3.
Mol Ther Nucleic Acids ; 27: 870-879, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35141047

RESUMO

Lipopolysaccharide binding protein (Lbp) has been recently identified as a relevant component of innate immunity response associated to adiposity. Here, we aimed to investigate the impact of adipose tissue Lbp on weight gain and white adipose tissue (WAT) in male and female mice fed an obesogenic diet. Specific adipose tissue Lbp gene knockdown was achieved through lentiviral particles containing shRNA-Lbp injected through surgery intervention. In males, WAT Lbp mRNA levels increased in parallel to fat accretion, and specific WAT Lbp gene knockdown led to reduced body weight gain, decreased fat accretion-related gene and protein expression, and increased inguinal WAT basal lipase activity, in parallel to lowered plasma free fatty acids, leptin, triglycerides but higher glycerol levels, resulting in slightly improved insulin action in the insulin tolerance test. In both males and females, inguinal WAT Lbp gene knockdown resulted in increased Ucp1 and Ppargc1a mRNA and Ucp1 protein levels, confirming adipose Lbp as a WAT browning repressor. In perigonadal WAT, Lbp gene knockdown also resulted in increased Ucp1 mRNA levels, but only in female mice, in which it was 500-fold increased. These data suggest specific adipose tissue Lbp gene knockdown as a possible therapeutic approach in the prevention of obesity-associated fat accretion.

4.
Antioxid Redox Signal ; 35(5): 319-340, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-33554726

RESUMO

Aims: To investigate the impact of exogenous hydrogen sulfide (H2S) and its endogenous biosynthesis on human adipocytes and adipose tissue in the context of obesity and insulin resistance. Results: Experiments in human adipose tissue explants and in isolated preadipocytes demonstrated that exogenous H2S or the activation of endogenous H2S biosynthesis resulted in increased adipogenesis, insulin action, sirtuin deacetylase, and PPARγ transcriptional activity, whereas chemical inhibition and gene knockdown of each enzyme generating H2S (CTH, CBS, MPST) led to altered adipocyte differentiation, cellular senescence, and increased inflammation. In agreement with these experimental data, visceral and subcutaneous adipose tissue expression of H2S-synthesising enzymes was significantly reduced in morbidly obese subjects in association with attenuated adipogenesis and increased markers of adipose tissue inflammation and senescence. Interestingly, weight-loss interventions (including bariatric surgery or diet/exercise) improved the expression of H2S biosynthesis-related genes. In human preadipocytes, the expression of CTH, CBS, and MPST genes and H2S production were dramatically increased during adipocyte differentiation. More importantly, the adipocyte proteome exhibiting persulfidation was characterized, disclosing that different proteins involved in fatty acid and lipid metabolism, the citrate cycle, insulin signaling, several adipokines, and PPAR, experienced the most dramatic persulfidation (85-98%). Innovation: No previous studies investigated the impact of H2S on human adipose tissue. This study suggests that the potentiation of adipose tissue H2S biosynthesis is a possible therapeutic approach to improve adipose tissue dysfunction in patients with obesity and insulin resistance. Conclusion: Altogether, these data supported the relevance of H2S biosynthesis in the modulation of human adipocyte physiology. Antioxid. Redox Signal. 35, 319-340.


Assuntos
Adipócitos/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Obesidade Mórbida/tratamento farmacológico , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Tecido Adiposo/metabolismo , Estudos Transversais , Suplementos Nutricionais , Humanos , Sulfeto de Hidrogênio/administração & dosagem , Obesidade Mórbida/metabolismo
5.
Redox Biol ; 42: 101668, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32800520

RESUMO

In the present study, we aimed to investigate the impact of permanent cystathionine-ß-Synthase (CBS) gene knockdown in human telomerase reverse transcriptase (hTERT) immortalized human adipose-derived mesenchymal stem cells (ASC52telo) and in their capacity to differentiate into adipocytes. CBS gene KD in ASC52telo cells led to increased cellular inflammation (IL6, CXCL8, TNF) and oxidative stress markers (increased intracellular reactive oxygen species and decreased reduced glutathione levels) in parallel to decreased H2S production and rejuvenation (LC3 and SIRT1)-related gene expression. In addition, CBS gene KD in ASC52telo cells resulted in altered mitochondrial respiratory function, characterised by decreased basal respiration (specifically proton leak) and spare respiratory capacity, without significant effects on cell viability and proliferation. In this context, shCBS-ASC52telo cells displayed enhanced adipogenic (FABP4, ADIPOQ, SLC2A4, CEBPA, PPARG)-, lipogenic (FASN, DGAT1)- and adipocyte (LEP, LBP)-related gene expression markers, decreased expression of proinflammatory cytokines, and increased intracellular lipid accumulation during adipocyte differentiation compared to control ASC52telo cells. Otherwise, the increased adipogenic potential of shCBS-ASC52telo cells was detrimental to the ability to differentiate into osteogenic linage. In conclusion, this study demonstrated that permanent CBS gene KD in ASC52telo cells promotes a cellular senescence phenotype with a very increased adipogenic potential, promoting a non-physiological enhanced adipocyte differentiation with excessive lipid storage.


Assuntos
Células-Tronco Mesenquimais , Adipogenia/genética , Diferenciação Celular , Células Cultivadas , Cistationina , Cistationina beta-Sintase/genética , Técnicas de Silenciamento de Genes , Humanos , Inflamação/genética , Estresse Oxidativo/genética
6.
EBioMedicine ; 53: 102697, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32143184

RESUMO

BACKGROUND: While the impact of metformin in hepatocytes leads to fatty acid (FA) oxidation and decreased lipogenesis, hepatic microRNAs (miRNAs) have been associated with fat overload and impaired metabolism, contributing to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). METHODS: We investigated the expression of hundreds of miRNAs in primary hepatocytes challenged by compounds modulating steatosis, palmitic acid and compound C (as inducers), and metformin (as an inhibitor). Then, additional hepatocyte and rodent models were evaluated, together with transient mimic miRNAs transfection, lipid droplet staining, thin-layer chromatography, quantitative lipidomes, and mitochondrial activity, while human samples outlined the translational significance of this work. FINDINGS: Our results show that treatments triggering fat accumulation and AMPK disruption may compromise the biosynthesis of hepatic miRNAs, while the knockdown of the miRNA-processing enzyme DICER in human hepatocytes exhibited increased lipid deposition. In this context, the ectopic recovery of miR-30b and miR-30c led to significant changes in genes related to FA metabolism, consistent reduction of ceramides, higher mitochondrial activity, and enabled ß-oxidation, redirecting FA metabolism from energy storage to expenditure. INTERPRETATION: Current findings unravel the biosynthesis of hepatic miR-30b and miR-30c in tackling inadequate FA accumulation, offering a potential avenue for the treatment of NAFLD. FUNDING: Instituto de Salud Carlos III (ISCIII), Govern de la Generalitat (PERIS2016), Associació Catalana de Diabetis (ACD), Sociedad Española de Diabetes (SED), Fondo Europeo de Desarrollo Regional (FEDER), Xunta de Galicia, Ministerio de Economía y Competitividad (MINECO), "La Caixa" Foundation, and CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN).


Assuntos
Hepatócitos/metabolismo , Metabolismo dos Lipídeos , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Células Cultivadas , Ceramidas/metabolismo , RNA Helicases DEAD-box/metabolismo , Metabolismo Energético , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Homeostase , Humanos , Hipoglicemiantes/farmacologia , Gotículas Lipídicas/metabolismo , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Ácido Palmítico/farmacologia , Ribonuclease III/metabolismo
7.
Int J Obes (Lond) ; 43(8): 1611-1619, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30206337

RESUMO

BACKGROUND/OBJECTIVES: Recent studies indicate a possible role of TSH/TSHR signalling axis on adipogenesis and adipose tissue physiology. Here, we aimed to investigate the relationship between adipose tissue TSHB and adipose tissue physiology-related gene expression. SUBJECTS/METHODS: Subcutaneous and visceral adipose tissue TSHB gene expression was analysed in two independent cohorts [Cohort1 (N = 96) and Cohort2 (N = 45)] and after bariatric surgery-induced weight loss [Cohort3 (N = 22)]. Adipose tissue TSH protein expression was also analysed in a subgroup of participants from Cohort 1 (N = 16). The effects of recombinant TSH on human subcutaneous preadipocytes and adipocytes were investigated. RESULTS: In cohort 1, both visceral and subcutaneous adipose tissue TSHB gene expression was positively correlated with the expression of mitochondrial function (PPARGC1A, ISCA2, CISD1, SIRT1, NFE2L2, NRF1) and fatty acid mobilization (CAV1, ENGL1), but not with adipogenic-related genes. Of note, adipose tissue TSH protein levels were also associated with some of these markers of mitochondrial function and fatty acid mobilization. These associations were replicated in cohort 2. Bariatric surgery-induced weight loss resulted in increased subcutaneous adipose tissue TSHB in parallel to increased PPARGC1A. In human subcutaneous adipocytes, rh-TSH administration led to increased mitochondrial respiratory capacity in parallel to increased mitochondrial function- and adipogenic-related gene expression, but no significant effects were observed during differentiation of human preadipocytes. CONCLUSION: These data point to a possible role of adipose tissue TSH in the maintenance of adipocyte mitochondrial function.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Mitocôndrias/metabolismo , Tireotropina Subunidade beta/genética , Tireotropina Subunidade beta/metabolismo , Adipogenia , Adulto , Biomarcadores/metabolismo , Células Cultivadas , Senescência Celular , Estudos de Coortes , Ácidos Graxos/metabolismo , Feminino , Expressão Gênica , Humanos , Inflamação/metabolismo , Gordura Intra-Abdominal/metabolismo , Masculino , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/metabolismo , Gordura Subcutânea/metabolismo , Tirotropina Alfa/metabolismo
8.
Cell Physiol Biochem ; 51(1): 142-153, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30448824

RESUMO

BACKGROUND/AIMS: Thyroid hormones have been recently linked to senescence and longevity. Given the recent description of TSHB mRNA in human adipose tissue (AT), we aimed to investigate the relationship between local AT TSH and adipose tissue senescence. METHODS: TSHB mRNA (measured by real-time PCR) and markers of adipose tissue senescence [BAX, DBC1, TP53, TNF (real-time PCR), telomere length (Telo TAGGG Telomere Length Assay) and lipidomics (liquid chromatography mass spectrometry)] were analysed in subcutaneous (SAT) and visceral (VAT) AT from euthyroid subjects. The chronic effects of TSH were also investigated in AT from hypothyroid rats and after recombinant human TSH (rhTSH) administration in human adipocytes. RESULTS: Both VAT and SAT TSHB gene expression negatively correlated with markers of AT cellular senescence (BAX, DBC1, TP53, TNF gene expression and specific glucosylceramides) and positively associated with telomere length. Supporting these observations, both rhTSH administration in human adipocytes and increased TSH in hypothyroid rats resulted in decreased markers of cellular senescence (Bax and Tp53 mRNA) in both gonadal and subcutaneous white adipose tissue. CONCLUSION: These data point to a possible role of TSH in AT cellular senescence.


Assuntos
Senescência Celular , Hipotireoidismo/patologia , Gordura Intra-Abdominal/metabolismo , Gordura Subcutânea/metabolismo , Tireotropina Subunidade beta/metabolismo , Adulto , Animais , Biomarcadores/metabolismo , Glicemia/análise , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hipotireoidismo/veterinária , Gordura Intra-Abdominal/citologia , Gordura Intra-Abdominal/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley , Gordura Subcutânea/citologia , Gordura Subcutânea/efeitos dos fármacos , Homeostase do Telômero , Tireotropina/genética , Tireotropina/metabolismo , Tireotropina/farmacologia , Tireotropina Subunidade beta/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA