Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioact Mater ; 18: 368-382, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35415309

RESUMO

To control capillary bleeding, surgeons may use absorbable hemostatic agents, such as Surgicel® and TachoSil®. Due to their slow resorption, their persistence in situ can have a negative impact on tissue repair in the resected organ. To avoid complications and obtain a hemostatic agent that promotes tissue repair, a zinc-supplemented calcium alginate compress was developed: HEMO-IONIC®. This compress is non-absorbable and is therefore removed once hemostasis has been achieved. After demonstrating the hemostatic efficacy and stability of the blood clot obtained with HEMO-IONIC, the impact of Surgicel, TachoSil, and HEMO-IONIC on cell activation and tissue repair were compared (i) in vitro on endothelial cells, which are essential to tissue repair, and (ii) in vivo in a mouse skin excision model. In vitro, only HEMO-IONIC maintained the phenotypic and functional properties of endothelial cells and induced their migration. In comparison, Surgicel was found to be highly cytotoxic, and TachoSil inhibited endothelial cell migration. In vivo, only HEMO-IONIC increased angiogenesis, the recruitment of cells essential to tissue repair (macrophages, fibroblasts, and epithelial cells), and accelerated maturation of the extracellular matrix. These results demonstrate that a zinc-supplemented calcium alginate, HEMO-IONIC, applied for 10 min at the end of surgery and then removed has a long-term positive effect on all phases of tissue repair.

2.
Genes (Basel) ; 12(2)2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499031

RESUMO

Ca2+ signaling plays a pivotal role in the control of cellular homeostasis and aberrant regulation of Ca2+ fluxes have a strong impact on cellular functioning. As a consequence of this ubiquitous role, Ca2+ signaling dysregulation is involved in the pathophysiology of multiple diseases including cancer. Indeed, multiple studies have highlighted the role of Ca2+ fluxes in all the steps of cancer progression. In particular, the transfer of Ca2+ at the ER-mitochondrial contact sites, also known as mitochondrial associated membranes (MAMs), has been shown to be crucial for cancer cell survival. One of the proteins enriched at this site is the sigma-1 receptor (S1R), a protein that has been described as a Ca2+-sensitive chaperone that exerts a protective function in cells in various ways, including the modulation of Ca2+ signaling. Interestingly, S1R is overexpressed in many types of cancer even though the exact mechanisms by which it promotes cell survival are not fully elucidated. This review summarizes the findings describing the roles of S1R in the control of Ca2+ signaling and its involvement in cancer progression.


Assuntos
Cálcio/metabolismo , Suscetibilidade a Doenças , Neoplasias/etiologia , Neoplasias/metabolismo , Receptores sigma/metabolismo , Animais , Sinalização do Cálcio , Retículo Endoplasmático/metabolismo , Homeostase , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Neoplasias/terapia , Transdução de Sinais , Receptor Sigma-1
3.
Cancers (Basel) ; 12(8)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784704

RESUMO

Sigma receptor 1 (SigR1) is an endoplasmic reticulum resident integral membrane protein whose functions remain unclear. Although the liver shows the highest expression of SigR1, its role in this organ is unknown. SigR1 is overexpressed in many cancers and its expression is correlated to hormonal status in hormone-dependent cancers. To better understand the role of SigR1 in hepatocytes we focused our work on the regulation of its expression in tumoral liver. In this context, hepatocellular adenomas, benign hepatic tumors associated with estrogen intake are of particular interest. The expression of SigR1 mRNA was assessed in hepatocellular adenoma (HCA) patients using qPCR. The impact of estrogen on the expression of SigR1 was studied in vivo (mice) and in vitro (HepG2 and Huh7 cells). The effect of HNF1α on the expression of SigR1 was studied in vivo by comparing wild type mice to HNF1 knockout mice. Estrogen enhanced SigR1 expression through its nuclear receptor ERα. HNF1α mutated HCA (H-HCA) significantly overexpressed SigR1 compared to all other HCA subtypes. HNF1 knockout mice showed an increase in SigR1 expression. Overexpressing SigR1 in cellular models increases proliferation rate and storage of lipid droplets, which phenocopies the H-HCA phenotype. SigR1 is involved in hepatocyte proliferation and steatosis and may play an important role in the control of the H-HCA phenotype.

4.
J Vis Exp ; (135)2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29889185

RESUMO

Ca2+ is a ubiquitous ion involved in all known cellular processes. While global Ca2+ responses may affect cell fate, local variations in free Ca2+ cytosolic concentrations, linked to release from internal stores or an influx through plasma membrane channels, regulate cortical cell processes. Pathogens that adhere to or invade host cells trigger a reorganization of the actin cytoskeleton underlying the host plasma membrane, which likely affects both global and local Ca2+ signaling. Because these events may occur at low frequencies in a pseudo-stochastic manner over extended kinetics, the analysis of Ca2+ signals induced by pathogens raises major technical challenges that need to be addressed. Here, we report protocols for the detection of global and local Ca2+ signals upon a Shigella infection of epithelial cells. In these protocols, artefacts linked to a prolonged exposure and photodamage associated with the excitation of Ca2+ fluorescent probes are troubleshot by stringently controlling the acquisition parameters over defined time periods during a Shigella invasion. Procedures are implemented to rigorously analyze the amplitude and frequency of global cytosolic Ca2+ signals during extended infection kinetics using the chemical probe Fluo-4.


Assuntos
Cálcio/metabolismo , Disenteria Bacilar/diagnóstico por imagem , Células Epiteliais/metabolismo , Animais , Disenteria Bacilar/patologia , Células Epiteliais/patologia , Humanos
5.
Hepatology ; 60(2): 700-14, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24715669

RESUMO

UNLABELLED: Cholangiocytes are biliary epithelial cells, which, like hepatocytes, originate from hepatoblasts during embryonic development. In this study we investigated the potential of human embryonic stem cells (hESCs) to differentiate into cholangiocytes and we report a new approach, which drives differentiation of hESCs toward the cholangiocytic lineage using feeder-free and defined culture conditions. After differentiation into hepatic progenitors, hESCs were differentiated further into cholangiocytes using growth hormone, epidermal growth factor, interleukin-6, and then sodium taurocholate. These conditions also allowed us to generate cholangiocytes from HepaRG-derived hepatoblasts. hESC- and HepaRG-derived cholangiocyte-like cells expressed markers of cholangiocytes including cytokeratin 7 and osteopontin, and the transcription factors SOX9 and hepatocyte nuclear factor 6. The cells also displayed specific proteins important for cholangiocyte functions including cystic fibrosis transmembrane conductance regulator, secretin receptor, and nuclear receptors. They formed primary cilia and also responded to hormonal stimulation by increase of intracellular Ca(2+) . We demonstrated by integrative genomics that the expression of genes, which signed hESC- or HepaRG-cholangiocytes, separates hepatocytic lineage from cholangiocyte lineage. When grown in a 3D matrix, cholangiocytes developed epithelial/apicobasal polarity and formed functional cysts and biliary ducts. In addition, we showed that cholangiocyte-like cells could also be generated from human induced pluripotent stem cells, demonstrating the efficacy of our approach with stem/progenitor cells of diverse origins. CONCLUSION: We have developed a robust and efficient method for differentiating pluripotent stem cells into cholangiocyte-like cells, which display structural and functional similarities to bile duct cells in normal liver. These cells will be useful for the in vitro study of the molecular mechanisms of bile duct development and have important potential for therapeutic strategies, including bioengineered liver approaches.


Assuntos
Sistema Biliar/citologia , Técnicas de Cultura de Células/métodos , Células-Tronco Embrionárias/citologia , Células Epiteliais/citologia , Hepatócitos/citologia , Células-Tronco Pluripotentes/citologia , Biomarcadores , Diferenciação Celular , Linhagem da Célula , Polaridade Celular , Células Cultivadas , Colagogos e Coleréticos/farmacologia , Meios de Cultura/farmacologia , Hormônio do Crescimento Humano/farmacologia , Humanos , Interleucina-6/farmacologia , Ácido Taurocólico/farmacologia , Transcriptoma
6.
Biol Cell ; 105(12): 561-75, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24117459

RESUMO

BACKGROUND INFORMATION: Hepatocytes, which perform the main functions of the liver, are particularly vulnerable to toxic agents such as cadmium, an environmental pollutant. To identify the molecular targets for cadmium in hepatocytes, we have studied the effects of CdCl2 on the hybrid cell line WIF-B9 that exhibits stable structural and functional hepatocytic polarity. RESULTS: We showed that the toxicity of CdCl2 (1 µM, 24 h) resulted in a reduction in direct intercellular communication (via gap junctions) and in an increase in paracellular permeability (decrease in the sealing of tight junctions). These effects were not related to changes in the expression of the key proteins involved, Cx32 and claudin 2, the first being constitutive of gap junctions and the second of tight junctions in this cell line. Using immunofluorescence experiments, we observed a change in the location of Cx32 and claudin 2: these two proteins were less often found in the tight junction network that closes the bile canaliculi (BC). In control cells, 'Proximity Ligation Assay' (PLA Duolink®) has confirmed in situ that molecules of claudin 2 and Cx32 are very close to each other at the BC (probably less than 16 nm). This was no longer the case after treatment with CdCl2 . Localisation of occludin and Cx32 relative to each other was not modified by CdCl2 , but CdCl2 increased the PLA signal between molecules of JAM-A and Cx32. Finally, examination of freeze-fracture replicas obtained from cultures treated with CdCl2 showed the disruption of the network of tight junctions and the depletion or the disintegration of the junctional plaques associated with tight junctions. CONCLUSIONS: This study demonstrates in situ the changes induced by cadmium on the organisation of cell-cell junctions and points out the importance of the association Cx32/claudin 2 for the maintenance of normal hepatocyte functions.


Assuntos
Cádmio/metabolismo , Junções Comunicantes/metabolismo , Hepatócitos/metabolismo , Fígado/citologia , Proteínas de Junções Íntimas/metabolismo , Linhagem Celular , Células Cultivadas , Hepatócitos/citologia , Humanos , Fígado/metabolismo , Junções Íntimas/metabolismo , Alicerces Teciduais
7.
PLoS One ; 8(1): e53896, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23349759

RESUMO

CONTEXT: KISS1R mutations have been reported in few patients with normosmic congenital hypogonadotropic hypogonadism (nCHH) (OMIM #146110). OBJECTIVE: To describe in detail nCHH patients with biallelic KISS1R mutations belonging to 2 unrelated families, and to functionally characterize a novel KISS1R mutation. RESULTS: An original mutant, p.Tyr313His, was found in the homozygous state in 3 affected kindred (2 females and 1 male) from a consanguineous Portuguese family. This mutation, located in the seventh transmembrane domain, affects a highly conserved amino acid, perturbs the conformation of the transmembrane segment, and impairs MAP kinase signaling and intracellular calcium release. In the second family, a French Caucasian male patient with nCHH was found to carry two recurrent mutations in the compound heterozygous state (p.Leu102Pro/Stop399Arg). In this man, pulsatile GnRH (Gonadotropin Releasing Hormone) administration restored pulsatile LH (Luteinizing Hormone) secretion and testicular hormone secretion. Later, long-term combined gonadotropin therapy induced spermatogenesis, enabling 3 successive pregnancies that resulted in 2 miscarriages and the birth of a healthy boy. CONCLUSION: We show that a novel loss-of-function mutation (p.Tyr313His) in the KISS1R gene can cause familial nCHH, revealing the crucial role of this amino acid in KISS1R function. The observed restoration of gonadotropin secretion by exogenous GnRH administration further supports, in humans, the hypothalamic origin of the gonadotropin deficiency in this genetic form of nCHH.


Assuntos
Predisposição Genética para Doença/genética , Hipogonadismo/genética , Mutação , Receptores Acoplados a Proteínas G/genética , Alelos , Sequência de Aminoácidos , Animais , Western Blotting , Células COS , Cálcio/metabolismo , Chlorocebus aethiops , Análise Mutacional de DNA , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Saúde da Família , Feminino , Células HEK293 , Humanos , Hipogonadismo/congênito , Kisspeptinas/farmacologia , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Linhagem , Fosforilação/efeitos dos fármacos , Conformação Proteica , Receptores Acoplados a Proteínas G/química , Receptores de Kisspeptina-1 , Homologia de Sequência de Aminoácidos
8.
Hepatology ; 52(2): 602-11, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20683958

RESUMO

UNLABELLED: Liver regeneration is regulated by growth factors, cytokines, and other endocrine and metabolic factors. Calcium is important for cell division, but its role in liver regeneration is not known. The purpose of this study was to understand the effects of cytosolic calcium signals in liver growth after partial hepatectomy (PH). The gene encoding the calcium-binding protein parvalbumin (PV) targeted to the cytosol using a nuclear export sequence (NES), and using a discosoma red fluorescent protein (DsR) marker, was transfected into rat livers by injecting it, in recombinant adenovirus (Ad), into the portal vein. We performed two-thirds PH 4 days after Ad-PV-NES-DsR or Ad-DsR injection, and liver regeneration was analyzed. Calcium signals were analyzed with fura-2-acetoxymethyl ester in hepatocytes isolated from Ad-infected rats and in Ad-infected Hela cells. Also, isolated hepatocytes were infected with Ad-DsR or Ad-PV-NES-DsR and assayed for bromodeoxyuridine incorporation. Ad-PV-NES-DsR injection resulted in PV expression in the hepatocyte cytosol. Agonist-induced cytosolic calcium oscillations were attenuated in both PV-NES-expressing Hela cells and hepatocytes, as compared to DsR-expressing cells. Bromodeoxyuridine incorporation (S phase), phosphorylated histone 3 immunostaining (mitosis), and liver mass restoration after PH were all significantly delayed in PV-NES rats. Reduced cyclin expression and retinoblastoma protein phosphorylation confirmed this observation. PV-NES rats exhibited reduced c-fos induction and delayed extracellular signal-regulated kinase 1/2 phosphorylation after PH. Finally, primary PV-NES-expressing hepatocytes exhibited less proliferation and agonist-induced cyclic adenosine monophosphate responsive element binding and extracellular signal-regulated kinase 1/2 phosphorylation, as compared with control cells. CONCLUSION: Cytosolic calcium signals promote liver regeneration by enhancing progression of hepatocytes through the cell cycle.


Assuntos
Cálcio/fisiologia , Hepatócitos/fisiologia , Regeneração Hepática/fisiologia , Animais , Células Cultivadas , Citosol , Feminino , Parvalbuminas/biossíntese , Ratos , Ratos Wistar
9.
J Hepatol ; 52(1): 54-62, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19914731

RESUMO

BACKGROUND & AIMS: Paracrine interactions are critical to liver physiology, particularly during regeneration, although physiological involvement of extracellular ATP, a crucial intercellular messenger, remains unclear. The physiological release of ATP into extracellular milieu and its impact on regeneration after partial hepatectomy were investigated in this study. METHODS: Hepatic ATP release after hepatectomy was examined in the rat and in human living donors for liver transplantation. Quinacrine was used for in vivo staining of ATP-enriched compartments in rat liver sections and isolated hepatocytes. Rats were treated with an antagonist for purinergic receptors (Phosphate-6-azo(benzene-2,4-disulfonic acid), PPADS), and liver regeneration after hepatectomy was analyzed. RESULTS: A robust and transient ATP release due to acute portal hyperpressure was observed immediately after hepatectomy in rats and humans. Clodronate liposomal pre-treatment partly inhibited ATP release in rats. Quinacrine-stained vesicles, co-labeled with a lysosomal marker in liver sections and isolated hepatocytes, were predominantly detected in periportal areas. These vesicles significantly disappeared after hepatectomy, in parallel with a decrease in liver ATP content. PPADS treatment inhibited hepatocyte cell cycle progression after hepatectomy, as revealed by a reduction in bromodeoxyuridine incorporation, phosphorylated histone 3 immunostaining, cyclin D1 and A expression and immediate early gene induction. CONCLUSION: Extracellular ATP is released immediately after hepatectomy from hepatocytes and Kupffer cells under mechanical stress and promotes liver regeneration in the rat. We suggest that in hepatocytes, ATP is released from a lysosomal compartment. Finally, observations made in living donors suggest that purinergic signalling could be critical for human liver regeneration.


Assuntos
Trifosfato de Adenosina/metabolismo , Hepatectomia/métodos , Regeneração Hepática/fisiologia , Fígado/metabolismo , Fígado/cirurgia , Adulto , Animais , Matriz Extracelular/metabolismo , Feminino , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Células de Kupffer/citologia , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo , Transplante de Fígado , Lisossomos/metabolismo , Masculino , Modelos Animais , Antagonistas do Receptor Purinérgico P2 , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2/metabolismo , Estresse Mecânico , Doadores de Tecidos
10.
Exp Cell Res ; 314(6): 1250-65, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18267319

RESUMO

Shigella, the causative agent of bacillary dysentery, invades colonic epithelial cells to elicit an intense inflammatory reaction leading to destruction of the mucosa. ATP-dependent paracrine signalling induced by connexin (Cx) hemichannel opening was previously shown to favor Shigella flexneri invasion and dissemination in transfectants of HeLa cells [G. Tran Van Nhieu, C. Clair, R. Bruzzone, M. Mesnil, P. Sansonetti and L. Combettes. (2003). Connexin-dependent intercellular communication increases invasion and dissemination of Shigella in epithelial cells. Nat. Cell Biol. 5, 720-726.]. However, although Cxs have been described in polarized epithelial cells, little is known about their structural organization and the role of hemichannels during S. flexneri invasion. We show here that polarized Caco-2/TC7 cells express significant amounts of Cx26, Cx32 and Cx43, but that unexpectedly, cell-cell coupling assessed by dye-transfer experiments is inefficient. Consistent with a predominant Cx organization in hemichannels, dye loading induced by low calcium was readily observed, with preferential loading at the basolateral side. Antibodies (Abs) against connexin extracellular loop peptides (CELAbs) demonstrated the importance of hemichannel signalling since they inhibited dye uptake at low calcium and at physiological calcium concentrations during S. flexneri invasion. Importantly, CELAbs allowed the visualization of hemichannels at the surface of epithelial cells, as structures distinct from gap intercellular junctions.


Assuntos
Anticorpos/farmacologia , Polaridade Celular/efeitos dos fármacos , Conexinas/química , Conexinas/metabolismo , Células Epiteliais/citologia , Intestinos/citologia , Peptídeos/imunologia , Sequência de Aminoácidos , Animais , Células CACO-2 , Cálcio/farmacologia , Conexina 26 , Conexina 43/química , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Isoquinolinas/metabolismo , Dados de Sequência Molecular , Peptídeos/química , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Shigella flexneri/citologia , Shigella flexneri/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína beta-1 de Junções Comunicantes
11.
FASEB J ; 21(7): 1481-91, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17264160

RESUMO

Benzene polyphosphates containing phosphate groups on one ring are Ins(1,4,5)P3 5-phosphatase inhibitors when evaluated against type-I Ins(1,4,5)P3 5-phosphatase. A novel biphenyl derivative, biphenyl 2,3',4,5',6-pentakisphosphate, with five phosphate groups on two rings was synthesized: It inhibited the activity of two inositol 5-phosphatases: type I and SHIP2 with Ins(1,3,4,5)P4 as substrate. The inhibition was competitive with respect to the substrate. IC50 value measured in rat hepatocytes, which contains the native Ins(1,4,5)P3 5-phosphatase, was in the micromolar range at 1.0 microM Ins(1,4,5)P3 as substrate. Biphenyl 2,3',4,5',6-pentakisphosphate did not affect the activity of Ins(1,4,5)P3 3-kinase A in the 5-100 microM range. Surprisingly, experimental evidence supports an effect of biphenyl 2,3',4,5',6-pentakisphosphate at the level of the Ins(1,4,5)P3 receptor. Finally, when injected into rat hepatocytes, the analog affected the frequency of Ca2+ oscillations in a positive or negative way depending on its concentration. At very high concentrations of the analog, Ca2+ oscillations were even suppressed. These data were interpreted as a dual effect of the biphenyl 2,3',4,5',6-pentakisphosphate on cytosolic [Ca2+] increases: an activation effect through an increase in Ins(1,4,5)P3 level via Ins(1,4,5)P3 5-phosphatase inhibition and an inhibitory effect, which was exerted directly on the Ins(1,4,5)P3 receptor. Thus, our data show for the first time that the frequency of Ca2+ oscillations in response to a Ca2+-mobilizing agonist can be controlled by inhibitors of type-I Ins(1,4,5)P3 5-phosphatase.


Assuntos
Compostos de Bifenilo/farmacologia , Cálcio/metabolismo , Hepatócitos/efeitos dos fármacos , Fosfatos/farmacologia , Animais , Linhagem Celular , Feminino , Hepatócitos/metabolismo , Microinjeções , Ratos , Ratos Wistar , Spodoptera
12.
Nat Cell Biol ; 5(8): 720-6, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12844145

RESUMO

Shigella flexneri, the causative agent of bacillar dystentery, invades the colonic mucosa where it elicits an intense inflammatory reaction responsible for destruction of the epithelium. During cell invasion, contact with host cells activates the type-III secretion of the Shigella IpaB and IpaC proteins. IpaB and IpaC are inserted into host cell plasma membranes and trigger initial signals that result in actin polymerization, while allowing cytosolic access of other bacterial effectors that further reorganize the cytoskeleton. After internalization, Shigella moves intracellularly and forms protrusions that infect neighbouring cells, promoting bacterial dissemination across the epithelium. Here, we show that during cell invasion, Shigella induces transient peaks in intracellular calcium concentration that are dependent on a functional type-III secretory apparatus. In addition, Shigella invasion induces the opening of Connexin 26 (Cx26) hemichannels in an actin- and phospholipase-C-dependent manner, allowing release of ATP into the medium. The released ATP, in turn, increases bacterial invasion and spreading, as well as calcium signalling induced by Shigella. These results provide evidence that pathogen-induced opening of connexin channels promotes signalling events that favour bacterial invasion and dissemination.


Assuntos
Comunicação Celular/fisiologia , Conexinas/metabolismo , Células Epiteliais/microbiologia , Mucosa Intestinal/metabolismo , Shigella flexneri/fisiologia , Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Sinalização do Cálcio/fisiologia , Conexina 26 , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células HeLa , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA