Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 276(26): 23790-4, 2001 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-11306583

RESUMO

Inhibition of beta-site amyloid precursor protein-cleaving enzyme by a statine-based inhibitor has been studied using steady state and stopped-flow methods. A slow onset rate of inhibition has been observed under steady state conditions, and a K(i) of 22 nm has been derived using progress curves analysis. Simulation of stopped-flow protein fluorescence transients provided an estimate of the K(d) for initial inhibitor binding of 660 nm. A two-step inhibition mechanism is proposed, wherein slower "tightening up" of the initial encounter complex occurs. Two hypotheses have been proposed in the literature to address the nature of the slow step in the inhibition of aspartic proteases by peptidomimetic inhibitors: a conformational change related to the "flap" movement and displacement of a catalytic water. We compared substrate and inhibitor binding rates under pre-steady-state conditions. Both ligands are likely to cause flap movement, whereas no catalytic water replacement occurs during substrate binding. Our results suggest that both ligands bind to the enzyme at a rate significantly lower than the diffusion limit, but there are additional rate limitations involved in inhibitor binding, resulting in a k(on) of 3.5 x 10(4) m(-)1 s(-)1 for the inhibitor compared with 3.5 x 10(5) m(-)1 s(-)1 for the substrate. Even though specific intermediate formation steps might be different in the productive inhibitor and substrate binding to beta-site amyloid precursor protein-cleaving enzyme, a similar final optimized conformation is achieved in both cases, as judged by the comparable free energy changes (DeltaDeltaG of 2.01 versus 1.97 kcal/mol) going from the initial to the final enzyme-inhibitor or enzyme-substrate complexes.


Assuntos
Aminoácidos/farmacologia , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Aminoácidos/metabolismo , Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/metabolismo , Endopeptidases , Fluorescência , Humanos , Cinética , Peptídeos/metabolismo , Peptídeos/farmacologia , Conformação Proteica
2.
J Biol Chem ; 275(44): 34086-91, 2000 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-10915801

RESUMO

Presenilins are integral membrane protein involved in the production of amyloid beta-protein. Mutations of the presenilin-1 and -2 gene are associated with familial Alzheimer's disease and are thought to alter gamma-secretase cleavage of the beta-amyloid precursor protein, leading to increased production of longer and more amyloidogenic forms of A beta, the 4-kDa beta-peptide. Here, we show that radiolabeled gamma-secretase inhibitors bind to mammalian cell membranes, and a benzophenone analog specifically photocross-links three major membrane polypeptides. A positive correlation is observed among these compounds for inhibition of cellular A beta formation, inhibition of membrane binding and cross-linking. Immunological techniques establish N- and C-terminal fragments of presenilin-1 as specifically cross-linked polypeptides. Furthermore, binding of gamma-secretase inhibitors to embryonic membranes derived from presenilin-1 knockout embryos is reduced in a gene dose-dependent manner. In addition, C-terminal fragments of presenilin-2 are specifically cross-linked. Taken together, these results indicate that potent and selective gamma-secretase inhibitors block A beta formation by binding to presenilin-1 and -2.


Assuntos
Endopeptidases/efeitos dos fármacos , Inibidores Enzimáticos/metabolismo , Proteínas de Membrana/metabolismo , Secretases da Proteína Precursora do Amiloide , Membrana Celular/metabolismo , Endopeptidases/metabolismo , Testes de Precipitina , Presenilina-1 , Presenilina-2 , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA