Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 25(18)2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961684

RESUMO

Recently, the research community has become increasingly concerned with the receptor αvß5, a member of the well-known integrin family. Different ongoing studies have evidenced that αvß5 integrin regulates not only physiological processes but also a wide array of pathological events, suggesting the receptor as a valuable biomarker to specifically target for therapeutic/diagnostic purposes. Remarkably, in some tumors the involvement of the receptor in cell proliferation, tumor dissemination and angiogenesis is well-documented. In this scenario, the availability of a selective αvß5 antagonist without 'off-target' protein effects may improve survival rate in patients with highly aggressive tumors, such as hepatocellular carcinoma. We recently reported a cyclic peptide, RGDechi15D, obtained by structure-activity studies. To our knowledge it represents the first peptide-based molecule reported in the literature able to specifically bind αvß5 integrin and not cross react with αvß3. Here we demonstrated the ability of the peptide to diminish both adhesion and invasion of HepG2 cells, an in vitro model system for hepatocellular carcinoma, to reduce the cell proliferation through an apoptotic process, and to interfere with the PI3K pathway. The peptide, also decreases the formation of new vessels in endothelial cells. Taken together these results indicate that the peptide can be considered a promising molecule with properties suited to be assessed in the future for its validation as a selective therapeutic/diagnostic weapon in hepatocarcinoma.


Assuntos
Peptídeos/metabolismo , Receptores de Vitronectina/metabolismo , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Hep G2 , Humanos , Oligopeptídeos/química , Peptídeos/química , Peptídeos/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Vitronectina/antagonistas & inibidores
2.
Chemistry ; 26(48): 11048-11059, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32628283

RESUMO

Efforts are made to perform an early and accurate detection of hepatocellular carcinoma (HCC) by simultaneous exploiting multiple clinically non-invasive imaging modalities. Original nanostructures derived from the combination of different inorganic domains can be used as efficient contrast agents in multimodal imaging. Superparamagnetic iron oxide nanoparticles (SPIONs) and Au nanoparticles (NPs) possess well-established contrasting features in magnetic resonance imaging (MRI) and X-ray computed tomography (CT), respectively. HCC can be targeted by using specific carbohydrates able to recognize asialoglycoprotein receptor 1 (ASGPR1) overexpressed in hepatocytes. Here, two different thiocarbohydrate ligands were purposely designed and alternatively conjugated to the surface of Au-speckled silica-coated SPIONs NPs, to achieve two original nanostructures that could be potentially used for dual mode targeted imaging of HCC. The results indicated that the two thiocarbohydrate decorated nanostructures possess convenient plasmonic/superparamagnetic properties, well-controlled size and morphology and good selectivity for targeting ASGPR1 receptor.


Assuntos
Receptor de Asialoglicoproteína/metabolismo , Carboidratos/química , Carcinoma Hepatocelular/diagnóstico por imagem , Ouro , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanopartículas Metálicas/química , Dióxido de Silício , Compostos de Sulfidrila/química , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética
3.
J Pept Sci ; 25(5): e3166, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30884005

RESUMO

Integrins are heterodimeric cell-surface proteins that play important roles during developmental and pathological processes. Diverse human pathologies involve integrin adhesion including thrombotic diseases, inflammation, tumour progression, fibrosis, and infectious diseases. Although in the past decade, novel integrin-inhibitor drugs have been developed for integrin-based medical applications, the structural determinants modulating integrin-ligands recognition mechanisms are still poorly understood, reducing the number of integrin subtype exclusive antagonists. In this scenario, we have very recently showed, by means of chemical and biological assays, that a chimeric peptide (named RGDechi), containing a cyclic RGD motif linked to an echistatin C-terminal fragment, is able to interact with the components of integrin family with variable affinities, the highest for αv ß3. Here, in order to understand the mechanistic details driving the molecular recognition mechanism of αv ß3 by RGDechi, we have performed a detailed structural and dynamics characterization of the free peptide by natural abundance nuclear magnetic resonance (NMR) spectroscopy. Our data indicate that RGDechi presents in solution an heterogeneous conformational ensemble characterized by a more constrained and rigid pentacyclic ring and a largely unstructured acyclic region. Moreover, we propose that the molecular recognition of αv ß3 integrin by RGDechi occurs by a combination of conformational selection and induced fit mechanisms. Finally, our study indicates that a detailed NMR characterization, by means of natural abundance 15 N and 13 C, of a mostly unstructured bioactive peptide may provide the molecular basis to get essential structural insights into the binding mechanism to the biological partner.


Assuntos
Oligopeptídeos/química , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Temperatura
4.
Cancers (Basel) ; 11(2)2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30682838

RESUMO

The mesenchymal sub-type of triple negative breast cancer (MES-TNBC) has a highly aggressive behavior and worse prognosis, due to its invasive and stem-like features, that correlate with metastatic dissemination and resistance to therapies. Furthermore, MES-TNBC is characterized by the expression of molecular markers related to the epithelial-to-mesenchymal transition (EMT) program and cancer stem cells (CSCs). The altered expression of αvß3 integrin has been well established as a driver of cancer progression, stemness, and metastasis. Here, we showed that the high levels of αvß3 are associated with MES-TNBC and therefore exploited the possibility to target this integrin to reduce the aggressiveness of this carcinoma. To this aim, MES-TNBC cells were treated with a novel peptide, named ψRGDechi, that we recently developed and characterized for its ability to selectively bind and inhibit αvß3 integrin. Notably, ψRGDechi was able to hamper adhesion, migration, and invasion of MES-TNBC cells, as well as the capability of these cells to form vascular-like structures and mammospheres. In addition, this peptide reversed EMT program inhibits mesenchymal markers. These findings show that targeting αvß3 integrin by ψRGDechi, it is possible to inhibit some of the malignant properties of MES-TNBC phenotype.

5.
J Med Chem ; 61(21): 9596-9610, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30278131

RESUMO

New integrin-selective molecules suitable for therapeutic or imaging purposes are currently of interest in development of effective personalized medical platforms. RGDechi is a bifunctional peptide selective for integrin αvß3. Herein, RGDechi and three truncated derivatives functionalized with a cysteine (1-4) were synthesized and labeled with the [99mTc][Tc(N)PNP43]-synthon ([PNP43 = (CH3)2P(CH2)2N(C2H4OCH3)(CH2)2P(CH3)2]) (99mTc1-4) as a basis for selective integrin recognition. The pharmacological parameters of all radiolabeled peptides were assessed along with the pharmacokinetic profiles of the most promising 99mTc1 and 99mTc2 compounds both on healthy and melanoma-bearing mice. Their metabolism and metabolite identification are also reported. 99mTc1-2 are able to discriminate between endogenously expressed integrins αvß3 and αvß5 and possess favorable pharmacokinetics characterized by low liver uptake and rapid elimination from nontarget tissues resulting in positive target-to-nontarget ratios. Results are encouraging; the presented construct can be considered the starting point for the development of agents for the selective detection of αvß3 expression by SPECT.


Assuntos
Integrina alfaVbeta3/metabolismo , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Compostos de Organotecnécio/química , Animais , Linhagem Celular Tumoral , Técnicas de Química Sintética , Desenho de Fármacos , Humanos , Marcação por Isótopo , Camundongos , Modelos Moleculares , Conformação Molecular , Sondas Moleculares/síntese química , Sondas Moleculares/farmacocinética , Oligopeptídeos/síntese química , Oligopeptídeos/farmacocinética , Relação Estrutura-Atividade , Distribuição Tecidual
6.
J Med Chem ; 60(23): 9874-9884, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29144748

RESUMO

Herein, we report the synthesis and biological characterization of the new peptide ψRGDechi as the first step toward novel-targeted theranostics in melanoma. This pseudopeptide is designed from our previously reported RGDechi peptide, known to bind selectively αvß3 integrin, and differs for a modified amide bond at the main protease cleavage site. This chemical modification drastically reduces the enzymatic degradation in serum, compared to its parental peptide, resulting in an overall magnification of the biological activity on a highly expressing αvß3 human metastatic melanoma cell line. Selective inhibition of cell adhesion, wound healing, and invasion are demonstrated; near-infrared fluorescent ψRGDechi derivative is able to detect αvß3 integrin in human melanoma xenografts in a selective fashion. More, molecular docking studies confirm that ψRGDechi recognizes the receptor similarly to RGDechi. All these findings pave the way for the future employment of this novel peptide as promising targeting probe and therapeutic agent in melanoma disease.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Integrina alfaVbeta3/metabolismo , Melanoma/diagnóstico por imagem , Melanoma/tratamento farmacológico , Peptídeos/química , Peptídeos/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Melanoma/metabolismo , Camundongos Nus , Simulação de Acoplamento Molecular , Imagem Óptica/métodos , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA