RESUMO
Tumor necrosis factor α (TNFα) is a soluble cytokine that is directly involved in systemic inflammation through the regulation of the intracellular NF-κB and MAPK signaling pathways. The development of biologic drugs that inhibit TNFα has led to improved clinical outcomes for patients with rheumatoid arthritis and other chronic autoimmune diseases; however, TNFα has proven to be difficult to drug with small molecules. Herein, we present a two-phase, fragment-based drug discovery (FBDD) effort in which we first identified isoquinoline fragments that disrupt TNFα ligand-receptor binding through an allosteric desymmetrization mechanism as observed in high-resolution crystal structures. The second phase of discovery focused on the de novo design and optimization of fragments with improved binding efficiency and drug-like properties. The 3-indolinone-based lead presented here displays oral, in vivo efficacy in a mouse glucose-6-phosphate isomerase (GPI)-induced paw swelling model comparable to that seen with a TNFα antibody.
Assuntos
Produtos Biológicos/síntese química , Desenho de Fármacos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Administração Oral , Regulação Alostérica , Animais , Artrite Reumatoide/tratamento farmacológico , Doenças Autoimunes/tratamento farmacológico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Ligantes , Camundongos , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Polycomb repressive complex 2 (PRC2) is a regulator of epigenetic states required for development and homeostasis. PRC2 trimethylates histone H3 at lysine 27 (H3K27me3), which leads to gene silencing, and is dysregulated in many cancers. The embryonic ectoderm development (EED) protein is an essential subunit of PRC2 that has both a scaffolding function and an H3K27me3-binding function. Here we report the identification of A-395, a potent antagonist of the H3K27me3 binding functions of EED. Structural studies demonstrate that A-395 binds to EED in the H3K27me3-binding pocket, thereby preventing allosteric activation of the catalytic activity of PRC2. Phenotypic effects observed in vitro and in vivo are similar to those of known PRC2 enzymatic inhibitors; however, A-395 retains potent activity against cell lines resistant to the catalytic inhibitors. A-395 represents a first-in-class antagonist of PRC2 protein-protein interactions (PPI) for use as a chemical probe to investigate the roles of EED-containing protein complexes.
Assuntos
Antineoplásicos/farmacologia , Indanos/farmacologia , Complexo Repressor Polycomb 2/antagonistas & inibidores , Sulfonamidas/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indanos/química , Modelos Moleculares , Estrutura Molecular , Complexo Repressor Polycomb 2/química , Complexo Repressor Polycomb 2/metabolismo , Ligação Proteica/efeitos dos fármacos , Relação Estrutura-Atividade , Sulfonamidas/química , Células Tumorais CultivadasRESUMO
Protein lysine methyltransferases (PKMTs) regulate diverse physiological processes including transcription and the maintenance of genomic integrity. Genetic studies suggest that the PKMTs SUV420H1 and SUV420H2 facilitate proficient nonhomologous end-joining (NHEJ)-directed DNA repair by catalyzing the di- and trimethylation (me2 and me3, respectively) of lysine 20 on histone 4 (H4K20). Here we report the identification of A-196, a potent and selective inhibitor of SUV420H1 and SUV420H2. Biochemical and co-crystallization analyses demonstrate that A-196 is a substrate-competitive inhibitor of both SUV4-20 enzymes. In cells, A-196 induced a global decrease in H4K20me2 and H4K20me3 and a concomitant increase in H4K20me1. A-196 inhibited 53BP1 foci formation upon ionizing radiation and reduced NHEJ-mediated DNA-break repair but did not affect homology-directed repair. These results demonstrate the role of SUV4-20 enzymatic activity in H4K20 methylation and DNA repair. A-196 represents a first-in-class chemical probe of SUV4-20 to investigate the role of histone methyltransferases in genomic integrity.
Assuntos
Inibidores Enzimáticos/farmacologia , Epigênese Genética/efeitos dos fármacos , Instabilidade Genômica/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Linhagem Celular Tumoral , Cristalografia por Raios X , Reparo do DNA/efeitos dos fármacos , Inibidores Enzimáticos/química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Metilação/efeitos dos fármacos , Modelos Moleculares , Estrutura MolecularRESUMO
Efficient elucidation of the biological mechanism of action of novel compounds remains a major bottleneck in the drug discovery process. To address this need in the area of oncology, we report the development of a multiparametric high-content screening assay panel at the level of single cells to dramatically accelerate understanding the mechanism of action of cell growth-inhibiting compounds on a large scale. Our approach is based on measuring 10 established end points associated with mitochondrial apoptosis, cell cycle disruption, DNA damage, and cellular morphological changes in the same experiment, across three multiparametric assays. The data from all of the measurements taken together are expected to help increase our current understanding of target protein functions, constrain the list of possible targets for compounds identified using phenotypic screens, and identify off-target effects. We have also developed novel data visualization and phenotypic classification approaches for detailed interpretation of individual compound effects and navigation of large collections of multiparametric cellular responses. We expect this general approach to be valuable for drug discovery across multiple therapeutic areas.
Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocromos c/metabolismo , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Mitocôndrias/efeitos dos fármacosRESUMO
Inhibition of protein kinases has validated therapeutic utility for cancer, with at least seven kinase inhibitor drugs on the market. Protein kinase inhibition also has significant potential for a variety of other diseases, including diabetes, pain, cognition, and chronic inflammatory and immunologic diseases. However, as the vast majority of current approaches to kinase inhibition target the highly conserved ATP-binding site, the use of kinase inhibitors in treating nononcology diseases may require great selectivity for the target kinase. As protein kinases are signal transducers that are involved in binding to a variety of other proteins, targeting alternative, less conserved sites on the protein may provide an avenue for greater selectivity. Here we report an affinity-based, high-throughput screening technique that allows nonbiased interrogation of small molecule libraries for binding to all exposed sites on a protein surface. This approach was used to screen both the c-Jun N-terminal protein kinase Jnk-1 (involved in insulin signaling) and p38α (involved in the formation of TNFα and other cytokines). In addition to canonical ATP-site ligands, compounds were identified that bind to novel allosteric sites. The nature, biological relevance, and mode of binding of these ligands were extensively characterized using two-dimensional (1)H/(13)C NMR spectroscopy, protein X-ray crystallography, surface plasmon resonance, and direct enzymatic activity and activation cascade assays. Jnk-1 and p38α both belong to the MAP kinase family, and the allosteric ligands for both targets bind similarly on a ledge of the protein surface exposed by the MAP insertion present in the CMGC family of protein kinases and distant from the active site. Medicinal chemistry studies resulted in an improved Jnk-1 ligand able to increase adiponectin secretion in human adipocytes and increase insulin-induced protein kinase PKB phosphorylation in human hepatocytes, in similar fashion to Jnk-1 siRNA and to rosiglitazone treatment. Together, the data suggest that these new ligand series bind to a novel, allosteric, and physiologically relevant site and therefore represent a unique approach to identify kinase inhibitors.
Assuntos
Descoberta de Drogas , Proteína Quinase 8 Ativada por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Sítios de Ligação/efeitos dos fármacos , Cristalografia por Raios X , Ensaios de Triagem em Larga Escala , Humanos , Proteína Quinase 8 Ativada por Mitógeno/química , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Bibliotecas de Moléculas Pequenas , Estereoisomerismo , Relação Estrutura-Atividade , Proteínas Quinases p38 Ativadas por Mitógeno/química , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
As part of a fully integrated and comprehensive strategy to discover novel antibacterial agents, NMR- and mass spectrometry-based affinity selection screens were performed to identify compounds that bind to protein targets uniquely found in bacteria and encoded by genes essential for microbial viability. A biphenyl acid lead series emerged from an NMR-based screen with the Haemophilus influenzae protein HI0065, a member of a family of probable ATP-binding proteins found exclusively in eubacteria. The structure-activity relationships developed around the NMR-derived biphenyl acid lead were consistent with on-target antibacterial activity as the Staphylococcus aureus antibacterial activity of the series correlated extremely well with binding affinity to HI0065, while the correlation of binding affinity with B-cell cytotoxicity was relatively poor. Although further studies are needed to conclusively establish the mode of action of the biphenyl series, these compounds represent novel leads that can serve as the basis for the development of novel antibacterial agents that appear to work via an unprecedented mechanism of action. Overall, these results support the genomics-driven hypothesis that targeting bacterial essential gene products that are not present in eukaryotic cells can identify novel antibacterial agents.
Assuntos
Adenosina Trifosfatases/metabolismo , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Química Farmacêutica/métodos , Haemophilus influenzae/metabolismo , Sequência de Aminoácidos , Animais , Linfócitos B/metabolismo , Desenho de Fármacos , Genoma Bacteriano , Genômica , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Dados de Sequência Molecular , Ligação Proteica , Relação Estrutura-AtividadeRESUMO
Survivin is one of the most tumor-specific genes in the human genome and is an attractive target for cancer therapy. However, small-molecule ligands for survivin have not yet been described. Thus, an interrogation of survivin which could potentially both validate a small-molecule therapy approach, and determine the biochemical nature of any of survivin's functions has not been possible. Here we describe the discovery and characterization of a small molecule binding site on the survivin surface distinct from the Smac peptide-binding site. The new site is located at the dimer interface and exhibits many of the features of highly druggable, biologically relevant protein binding sites. A variety of small hydrophobic compounds were found that bind with moderate affinity to this binding site, from which one lead was developed into a group of compounds with nanomolar affinity. Additionally, a subset of these compounds are adequately water-soluble and cell-permeable. Thus, the structural studies and small molecules described here provide tools that can be used to probe the biochemical role(s) of survivin, and may ultimately serve as a basis for the development of small molecule therapeutics acting via direct or allosteric disruption of binding events related to this poorly understood target.
Assuntos
Inibidores de Cisteína Proteinase/química , Proteínas Associadas aos Microtúbulos/química , Sondas Moleculares/química , Proteínas de Neoplasias/química , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas Inibidoras de Apoptose , Ligantes , Conformação Proteica , SurvivinaRESUMO
We have screened molecules for inhibition of MetAP2 as a novel approach toward antiangiogenesis and anticancer therapy using affinity selection/mass spectrometry (ASMS) employing MetAP2 loaded with Mn(2+) as the active site metal. After a series of anthranilic acid sulfonamides with micromolar affinities was identified, chemistry efforts were initiated. The micromolar hits were quickly improved to potent nanomolar inhibitors by chemical modifications guided by insights from X-ray crystallography.
Assuntos
Aminopeptidases/antagonistas & inibidores , Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Glicoproteínas/antagonistas & inibidores , Sulfonamidas/farmacologia , Inibidores da Angiogênese/síntese química , Inibidores da Angiogênese/química , Antineoplásicos/síntese química , Antineoplásicos/química , Sítios de Ligação , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Manganês/química , Espectrometria de Massas/métodos , Metionil Aminopeptidases , Modelos Moleculares , Estrutura Molecular , Sensibilidade e Especificidade , Estereoisomerismo , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/químicaRESUMO
Reversal of aberrant gene expression that is induced by the proto-oncogene c-myc is likely to be effective for treating a variety of tumors that rely on this pathway for growth. One strategy to down-regulate the c-myc pathway is to target transcription factors that regulate its own expression. A host of proteins act in coordination to regulate c-myc expression and any one of them are theoretical targets for small-molecule therapy. Experimentally, it has been shown that the far upstream element (FUSE) binding protein (FBP) is essential for c-myc expression, and reductions in FBP levels both reduce c-myc expression and correlate with slower cell growth. FBP binds to ssDNA by capturing exposed DNA bases in a hydrophobic pocket. This suggests that a small molecule could be designed to occupy this pocket and inhibit FBP function. Using a variety of screening methodologies, we have identified ligands that bind to the DNA binding pockets of the KH domains of FBP. Gel shift analyses using full length FBP and a related transcription factor confirm that a small-molecule lead compound inhibits DNA binding in a specific manner. The benzoylanthranilic acid compounds described here represent leads in the design of FBP inhibitors that can serve as useful tools in the study of c-myc regulation and in the development of therapeutics that target the c-myc pathway.
Assuntos
Técnicas de Química Combinatória/métodos , Proteínas de Ligação a DNA/antagonistas & inibidores , Genes myc , Espectroscopia de Ressonância Magnética , Regiões Promotoras Genéticas , Sítios de Ligação , DNA Helicases , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Desenho de Fármacos , Humanos , Concentração Inibidora 50 , Ligantes , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína , Proto-Oncogene Mas , Proteínas de Ligação a RNA , Sequências Repetitivas de Aminoácidos , Relação Estrutura-AtividadeRESUMO
Bcl-xL is a member of the Bcl-2 family of proteins that are implicated to play a vital role in several diseases including cancer. Bcl-xL suppresses apoptosis; thus the inhibition of Bcl-xL function could restore the apoptotic process. To identify antagonists of Bcl-xL function, two ultra-high-throughput screens were implemented. An activity assay utilized fluorescence polarization, based on the binding of fluorescein-labeled peptide [the BH3 domain of BAD protein (F-Bad 6)] to Bcl-xL. A 384-well plate assay with mixtures of 10 drug compounds per well, combined with a fast plate reader, resulted in a throughput of 46,080 data points/day. Utilizing this screening format, 370,400 compounds were screened in duplicate and 425 inhibitors with an IC(50) below 100 microM were identified. The second assay format, affinity selection/mass spectrometry (ASMS), used ultrafiltration to separate Bcl-xL binders from nonbinders in mixtures of 2400 compounds. The bound species were subsequently separated from the protein and analyzed by flow injection electrospray mass spectrometry. Utilizing the ASMS format, 263,382 compounds were screened in duplicate and 29 binders with affinities below 100 microM were identified. Two novel classes of Bcl-xL inhibitors were identified by both methods and confirmed to bind (13)C-labeled Bcl-xL using heteronuclear magnetic resonance spectroscopy.