Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 24(9): 4466-4488, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35688634

RESUMO

The human pathogen Listeria monocytogenes synthesizes and degrades c-di-AMP using the diadenylate cyclase CdaA and the phosphodiesterases PdeA and PgpH respectively. c-di-AMP is essential because it prevents the uncontrolled uptake of osmolytes. Here, we studied the phenotypes of cdaA, pdeA, pgpH and pdeA pgpH mutants with defects in c-di-AMP metabolism and characterized suppressor mutants restoring their growth defects. The characterization of the pdeA pgpH mutant revealed that the bacteria show growth defects in defined medium, a phenotype that is invariably suppressed by mutations in cdaA. The previously reported growth defect of the cdaA mutant in rich medium is suppressed by mutations that osmotically stabilize the c-di-AMP-free strain. We also found that the cdaA mutant has an increased sensitivity against isoleucine. The isoleucine-dependent growth inhibition of the cdaA mutant is suppressed by codY mutations that likely reduce the DNA-binding activity of encoded CodY variants. Moreover, the characterization of the cdaA suppressor mutants revealed that the Opp oligopeptide transport system is involved in the uptake of the antibiotic fosfomycin. In conclusion, the suppressor analysis corroborates a key function of c-di-AMP in controlling osmolyte homeostasis in L. monocytogenes.


Assuntos
Fosfomicina , Listeria monocytogenes , Acetamidas , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , DNA/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Fosfomicina/metabolismo , Fosfomicina/farmacologia , Humanos , Isoleucina/metabolismo , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Oligopeptídeos/metabolismo , Diester Fosfórico Hidrolases/genética , Fósforo-Oxigênio Liases/genética
2.
Environ Microbiol ; 22(7): 2771-2791, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32250026

RESUMO

The second messenger cyclic di-AMP (c-di-AMP) is essential for growth of many bacteria because it controls osmolyte homeostasis. c-di-AMP can regulate the synthesis of potassium uptake systems in some bacteria and it also directly inhibits and activates potassium import and export systems, respectively. Therefore, c-di-AMP production and degradation have to be tightly regulated depending on the environmental osmolarity. The Gram-positive pathogen Listeria monocytogenes relies on the membrane-bound diadenylate cyclase CdaA for c-di-AMP production and degrades the nucleotide with two phosphodiesterases. While the enzymes producing and degrading the dinucleotide have been reasonably well examined, the regulation of c-di-AMP production is not well understood yet. Here we demonstrate that the extracytoplasmic regulator CdaR interacts with CdaA via its transmembrane helix to modulate c-di-AMP production. Moreover, we show that the phosphoglucosamine mutase GlmM forms a complex with CdaA and inhibits the diadenylate cyclase activity in vitro. We also found that GlmM inhibits c-di-AMP production in L. monocytogenes when the bacteria encounter osmotic stress. Thus, GlmM is the major factor controlling the activity of CdaA in vivo. GlmM can be assigned to the class of moonlighting proteins because it is active in metabolism and adjusts the cellular turgor depending on environmental osmolarity.


Assuntos
Proteínas de Bactérias/metabolismo , AMP Cíclico/biossíntese , Listeria monocytogenes/fisiologia , Fosfoglucomutase/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Homeostase , Listeria monocytogenes/enzimologia , Pressão Osmótica/fisiologia
3.
J Biol Chem ; 294(44): 16020-16033, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31506295

RESUMO

Many bacteria and some archaea produce the second messenger cyclic diadenosine monophosphate (c-di-AMP). c-di-AMP controls the uptake of osmolytes in Firmicutes, including the human pathogen Listeria monocytogenes, making it essential for growth. c-di-AMP is known to directly regulate several potassium channels involved in osmolyte transport in species such as Bacillus subtilis and Streptococcus pneumoniae, but whether this same mechanism is involved in L. monocytogenes, or even whether similar ion channels were present, was not known. Here, we have identified and characterized the putative L. monocytogenes' potassium transporters KimA, KtrCD, and KdpABC. We demonstrate that Escherichia coli expressing KimA and KtrCD, but not KdpABC, transport potassium into the cell, and both KimA and KtrCD are inhibited by c-di-AMP in vivo For KimA, c-di-AMP-dependent regulation requires the C-terminal domain. In vitro assays demonstrated that the dinucleotide binds to the cytoplasmic regulatory subunit KtrC and to the KdpD sensor kinase of the KdpDE two-component system, which in Staphylococcus aureus regulates the corresponding KdpABC transporter. Finally, we also show that S. aureus contains a homolog of KimA, which mediates potassium transport. Thus, the c-di-AMP-dependent control of systems involved in potassium homeostasis seems to be conserved in phylogenetically related bacteria. Surprisingly, the growth of an L. monocytogenes mutant lacking the c-di-AMP-synthesizing enzyme cdaA is only weakly inhibited by potassium. Thus, the physiological impact of the c-di-AMP-dependent control of potassium uptake seems to be less pronounced in L. monocytogenes than in other Firmicutes.


Assuntos
Proteínas de Bactérias/metabolismo , Listeria monocytogenes/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Pressão Osmótica , Potássio/metabolismo , Proteínas de Bactérias/química , Fosfatos de Dinucleosídeos/metabolismo , Proteínas de Membrana Transportadoras/química , Domínios Proteicos , Homologia de Sequência de Aminoácidos
4.
J Bacteriol ; 201(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30745376

RESUMO

Cyclic di-AMP (c-di-AMP) is a second messenger involved in diverse metabolic processes, including osmolyte uptake, cell wall homeostasis, and antibiotic and heat resistance. In Lactococcus lactis, a lactic acid bacterium which is used in the dairy industry and as a cell factory in biotechnological processes, the only reported interaction partners of c-di-AMP are the pyruvate carboxylase and BusR, the transcription regulator of the busAB operon for glycine betaine uptake. However, recent studies uncovered a major role of c-di-AMP in the control of potassium homeostasis, and potassium is the signal that triggers c-di-AMP synthesis. In this study, we have identified KupA and KupB, which belong to the Kup/HAK/KT family, as novel c-di-AMP binding proteins. Both proteins are high-affinity potassium transporters, and their transport activities are inhibited by binding of c-di-AMP. Thus, in addition to the well-studied Ktr/Trk potassium channels, KupA and KupB represent a second class of potassium transporters that are subject to inhibition by c-di-AMP.IMPORTANCE Potassium is an essential ion in every living cell. Even though potassium is the most abundant cation in cells, its accumulation can be toxic. Therefore, the level of potassium has to be tightly controlled. In many Gram-positive bacteria, the second messenger cyclic di-AMP plays a key role in the control of potassium homeostasis by binding to potassium transporters and regulatory proteins and RNA molecules. In the lactic acid bacterium Lactococcus lactis, none of these conserved c-di-AMP-responsive molecules are present. In this study, we demonstrate that the KupA and KupB proteins of L. lactis IL1403 are high-affinity potassium transporters and that their transport activity is inhibited by the second messenger c-di-AMP.


Assuntos
Proteínas de Bactérias/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Lactococcus lactis/enzimologia , Proteínas de Membrana Transportadoras/metabolismo , Potássio/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico , Lactococcus lactis/genética , Proteínas de Membrana Transportadoras/genética , Ligação Proteica
5.
J Bacteriol ; 201(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30224435

RESUMO

Cyclic di-AMP is a second-messenger nucleotide that is produced by many bacteria and some archaea. Recent work has shown that c-di-AMP is unique among the signaling nucleotides, as this molecule is in many bacteria both essential on one hand and toxic upon accumulation on the other. Moreover, in bacteria, like Bacillus subtilis, c-di-AMP controls a biological process, potassium homeostasis, by binding both potassium transporters and riboswitch molecules in the mRNAs that encode the potassium transporters. In addition to the control of potassium homeostasis, c-di-AMP has been implicated in many cellular activities, including DNA repair, cell wall homeostasis, osmotic adaptation, biofilm formation, central metabolism, and virulence. c-di-AMP is synthesized and degraded by diadenylate cyclases and phosphodiesterases, respectively. In the diadenylate cyclases, one type of catalytic domain, the diadenylate cyclase (DAC) domain, is coupled to various other domains that control the localization, the protein-protein interactions, and the regulation of the enzymes. The phosphodiesterases have a catalytic core that consists either of a DHH/DHHA1 or of an HD domain. Recent findings on the occurrence, domain organization, activity control, and structural features of diadenylate cyclases and phosphodiesterases are discussed in this review.


Assuntos
Adenilil Ciclases/metabolismo , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Adenilil Ciclases/química , Adenilil Ciclases/genética , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/genética , Domínios Proteicos
6.
J Bacteriol ; 200(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29610213

RESUMO

Cyclic di-AMP (c-di-AMP) is an important second messenger in bacteria. In most Firmicutes, the molecule is required for growth in complex media but also toxic upon accumulation. In an article on their current study, Zarrella and coworkers present a suppressor analysis of a Streptococcus pneumoniae strain that is unable to degrade c-di-AMP (T. M. Zarrella, D. W. Metzger, and G. Bai, J Bacteriol 200:e00045-18, 2018, https://doi.org/10.1128/JB.00045-18). Their study identifies new links between c-di-AMP and potassium homeostasis and supports the hypothesis that c-di-AMP serves as a second messenger to report about the intracellular potassium concentrations.


Assuntos
AMP Cíclico/metabolismo , Bactérias Gram-Positivas/metabolismo , Potássio/metabolismo , Regulação Bacteriana da Expressão Gênica , Bactérias Gram-Positivas/genética , Homeostase , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Sistemas do Segundo Mensageiro
7.
Trends Microbiol ; 26(3): 175-185, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28965724

RESUMO

Bacteria use second-messenger molecules to adapt to their environment. Several second messengers, among them cyclic di-AMP (c-di-AMP), have been discovered and intensively studied. Interestingly, c-di-AMP is essential for growth of Gram-positive bacteria such as Bacillus subtilis, Listeria monocytogenes, and Staphylococcus aureus. Many studies demonstrated that perturbation of c-di-AMP metabolism affects the integrity of the bacterial cell envelope. Therefore, it has been assumed that the nucleotide is essential for proper cell envelope synthesis. In this Opinion paper, we propose that the cell envelope phenotypes caused by perturbations of c-di-AMP metabolism can be interpreted differently: c-di-AMP might indirectly control cell envelope integrity by modulating the turgor, a physical variable that needs to be tightly adjusted. We also discuss open questions related to c-di-AMP metabolism that need to be urgently addressed by future studies.


Assuntos
Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Bactérias Gram-Positivas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Osmorregulação/fisiologia , Bacillus subtilis/metabolismo , Proteínas de Bactérias , Parede Celular/metabolismo , Listeria monocytogenes/metabolismo , Fenótipo , Sistemas do Segundo Mensageiro , Staphylococcus aureus/metabolismo
8.
Curr Genet ; 64(1): 191-195, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28825218

RESUMO

Potassium and glutamate are the most abundant ions in every living cell. Whereas potassium plays a major role to keep the cellular turgor and to buffer the negative charges of the nucleic acids, the major function of glutamate is to serve as the universal amino group donor. In addition, both ions are involved in osmoprotection in bacterial cells. Here, we discuss how bacterial cells maintain the homeostasis of both ions and how adaptive evolution allows them to live even at extreme potassium limitation. Interestingly, positively charged amino acids are able to partially replace potassium, likely by buffering the negative charge of DNA. A major factor involved in the control of potassium homeostasis in Gram-positive bacteria is the essential second messenger cyclic di-AMP. This nucleotide is synthesized in response to the potassium concentration and in turn controls the expression and activity of potassium transporters. We discuss the link between the two major ions, DNA and the second messenger c-di-AMP.


Assuntos
AMP Cíclico/metabolismo , Ácido Glutâmico/metabolismo , Íons/metabolismo , Potássio/metabolismo , Sistemas do Segundo Mensageiro , Adaptação Biológica , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Homeostase , Concentração de Íons de Hidrogênio
9.
Environ Microbiol ; 20(1): 156-168, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29027347

RESUMO

Pyridoxal 5'-phosphate (PLP), the most important form of vitamin B6 serves as a cofactor for many proteins. Two alternative pathways for de novo PLP biosynthesis are known: the short deoxy-xylulose-5-phosphate (DXP)-independent pathway, which is present in the Gram-positive model bacterium Bacillus subtilis and the longer DXP-dependent pathway, which has been intensively studied in the Gram-negative model bacterium Escherichia coli. Previous studies revealed that bacteria contain many promiscuous enzymes causing a so-called 'underground metabolism', which can be important for the evolution of novel pathways. Here, we evaluated the potential of B. subtilis to use a truncated non-native DXP-dependent PLP pathway from E. coli for PLP synthesis. Adaptive laboratory evolution experiments revealed that two non-native enzymes catalysing the last steps of the DXP-dependent PLP pathway and two genomic alterations are sufficient to allow growth of vitamin B6 auxotrophic bacteria as rapid as the wild type. Thus, the existence of an underground metabolism in B. subtilis facilitates the generation of a pathway for synthesis of PLP using parts of a non-native vitamin B6 pathway. The introduction of non-native enzymes into a metabolic network and rewiring of native metabolism could be helpful to generate pathways that might be optimized for producing valuable substances.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Fosfato de Piridoxal/biossíntese , Fosfato de Piridoxal/metabolismo , Bacillus subtilis/enzimologia , Cisteína/análogos & derivados , Cisteína/metabolismo , Escherichia coli/metabolismo , Glucosamina/análogos & derivados , Glucosamina/metabolismo , Pentosefosfatos/metabolismo , Proteínas , Vitamina B 6/metabolismo
10.
Sci Signal ; 10(475)2017 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-28420751

RESUMO

The second messenger cyclic di-adenosine monophosphate (c-di-AMP) is essential in the Gram-positive model organism Bacillus subtilis and in related pathogenic bacteria. It controls the activity of the conserved ydaO riboswitch and of several proteins involved in potassium (K+) uptake. We found that the YdaO protein was conserved among several different bacteria and provide evidence that YdaO functions as a K+ transporter. Thus, we renamed the gene and protein KimA (K+ importer A). Reporter activity assays indicated that expression beyond the c-di-AMP-responsive riboswitch of the kimA upstream regulatory region occurred only in bacteria grown in medium containing low K+ concentrations. Furthermore, mass spectrometry analysis indicated that c-di-AMP accumulated in bacteria grown in the presence of high K+ concentrations but not in low concentrations. A bacterial strain lacking all genes encoding c-di-AMP-synthesizing enzymes was viable when grown in medium containing low K+ concentrations, but not at higher K+ concentrations unless it acquired suppressor mutations in the gene encoding the cation exporter NhaK. Thus, our results indicated that the control of potassium homeostasis is an essential function of c-di-AMP.


Assuntos
Bacillus subtilis/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Homeostase/fisiologia , Potássio/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fosfatos de Dinucleosídeos/genética
11.
Mol Microbiol ; 97(2): 189-204, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25869574

RESUMO

Second messengers are key components of many signal transduction pathways. In addition to cyclic AMP, ppGpp and cyclic di-GMP, many bacteria use also cyclic di-AMP as a second messenger. This molecule is synthesized by distinct classes of diadenylate cyclases and degraded by phosphodiesterases. The control of the intracellular c-di-AMP pool is very important since both a lack of this molecule and its accumulation can inhibit growth of the bacteria. In many firmicutes, c-di-AMP is essential, making it the only known essential second messenger. Cyclic di-AMP is implicated in a variety of functions in the cell, including cell wall metabolism, potassium homeostasis, DNA repair and the control of gene expression. To understand the molecular mechanisms behind these functions, targets of c-di-AMP have been identified and characterized. Interestingly, c-di-AMP can bind both proteins and RNA molecules. Several proteins that interact with c-di-AMP are required to control the intracellular potassium concentration. In Bacillus subtilis, c-di-AMP also binds a riboswitch that controls the expression of a potassium transporter. Thus, c-di-AMP is the only known second messenger that controls a biological process by interacting with both a protein and the riboswitch that regulates its expression. Moreover, in Listeria monocytogenes c-di-AMP controls the activity of pyruvate carboxylase, an enzyme that is required to replenish the citric acid cycle. Here, we review the components of the c-di-AMP signaling system.


Assuntos
Fosfatos de Dinucleosídeos/metabolismo , Sistemas do Segundo Mensageiro , Bactérias/enzimologia , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Piruvato Carboxilase/metabolismo , Riboswitch
12.
J Biol Chem ; 290(10): 6596-606, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25605729

RESUMO

The recently identified second messenger cyclic di-AMP (c-di-AMP) is involved in several important cellular processes, such as cell wall metabolism, maintenance of DNA integrity, ion transport, transcription regulation, and allosteric regulation of enzyme function. Interestingly, c-di-AMP is essential for growth of the Gram-positive model bacterium Bacillus subtilis. Although the genome of B. subtilis encodes three c-di-AMP-producing diadenlyate cyclases that can functionally replace each other, the phylogenetically related human pathogens like Listeria monocytogenes and Staphylococcus aureus possess only one enzyme, the diadenlyate cyclase CdaA. Because CdaA is also essential for growth of these bacteria, the enzyme is a promising target for the development of novel antibiotics. Here we present the first crystal structure of the L. monocytogenes CdaA diadenylate cyclase domain that is conserved in many human pathogens. Moreover, biochemical characterization of the cyclase revealed an unusual metal cofactor requirement.


Assuntos
Proteínas de Bactérias/química , Cristalografia por Raios X , Listeria monocytogenes/enzimologia , Fósforo-Oxigênio Liases/química , Sequência de Aminoácidos , Bacillus subtilis/química , Catálise , Parede Celular/química , Cobalto/química , Fosfatos de Dinucleosídeos/metabolismo , Humanos , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA