Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 29(9): 285, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37608185

RESUMO

CONTEXT: BaTiO3 is one of the most important ferroelectric oxides in electronic applications. Also, it has attractive properties for catalysis that could be used for reducing contamination levels, especially carbon monoxide, CO. CO is one of the main gaseous pollutants generally released from the combustion of fossil fuel. In this work, the CO transformation on pristine and Au-modified BaTiO3 perovskite for H2CO obtention is studied. The CO adsorption and hydrogenation on pristine BaTiO3 leads to formaldehyde synthesis as the most stable product through two possible routes. Furthermore, hydrogenation stages are less probable on pristine BaTiO3. On Au-modified BaTiO3 formaldehyde is the principal product too but Au adatom generates H2CO competition with HCOH. After BaTiO3 modification with Au unpaired electrons were generated. These unpaired electrons are related to the adatom reactivity. According to the obtained results, pristine and Au-modified BaTiO3 can adsorb and hydrogenate CO generating formaldehyde as the principal product. BaTiO3 modifications with Au increase the reactivity of the perovskite in the CO hydrogenation reactions. CO hydrogenation process on Au suggests that further hydrogenation stages beyond formaldehyde are possible. METHODS: The study was performed through ab initio calculations using the periodic spin-polarized Density Functional Theory (DFT) as implemented in Quantum ESPRESSO. DFT calculations were carried out using the Plane Wave self-consistent field (PWscf). Spin density difference allows us to identify reactive regions related to dangling bonds and unpaired electrons. A plane wave basis set was used to represent the electron states. Vanderbilt pseudopotentials with nonlinear core correction were used to model the ionic cores and valence electrons interaction. Exchange-correlation energies were treated within the generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) parameterization.

2.
RSC Adv ; 12(44): 28712-28719, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36320491

RESUMO

Copolymerizations of ethylene and alfa-olefins, using Ziegler-Natta or metallocene catalysts, testing two methods of co-monomer addition, through batch or dossing mode during the reactions, are reported in this work. Copolymerizations are monitored by in line Raman spectroscopy, comparing the effect of the kind of catalyst and the co-monomer addition modes on the chemical composition of the copolymers produced. The global co-monomer composition is determined by 13C NMR spectroscopy, compared with the monitoring by Raman spectroscopy along the reactions, where it is possible to define homogeneous or heterogeneous co-monomer distributions. Batch addition achieves higher incorporations of co-monomers, compared to dosed addition, where it is possible to determine the maximal co-monomer addition without affecting activities by transfer reactions. The incorporation mode of alfa-olefins in this type of reaction has been little reported, and until it is known, there is no rapid technique available to determine the uniformity of the co-monomer incorporations in real time. Copolymerization kinetics are also reported here and correlated to the addition method of the comonomers in both kinds of reactions. Homogeneous and heterogeneous co-monomer incorporations promoted by a single site catalyst (metallocene) or multisite system (Ziegler-Natta) is related to the homogeneous or heterogeneous co-monomer distributions detected by Raman spectroscopy, using each kind of catalytic system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA