Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(7)2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37515189

RESUMO

The Venezuelan equine encephalitis virus (VEEV) nonstructural protein 2 (nsP2) cysteine protease (EC 3.4.22.B79) is essential for viral replication. High throughput in silico/in vitro screening using a focused set of known cysteine protease inhibitors identified two epoxysuccinyl prodrugs, E64d and CA074 methyl ester (CA074me) and a reversible oxindole inhibitor. Here, we determined the X-ray crystal structure of the CA074-inhibited nsP2 protease and compared it with our E64d-inhibited structure. We found that the two inhibitors occupy different locations in the protease. We designed hybrid inhibitors with improved potency. Virus yield reduction assays confirmed that the viral titer was reduced by >5 logs with CA074me. Cell-based assays showed reductions in viral replication for CHIKV, VEEV, and WEEV, and weaker inhibition of EEEV by the hybrid inhibitors. The most potent was NCGC00488909-01 which had an EC50 of 1.76 µM in VEEV-Trd-infected cells; the second most potent was NCGC00484087 with an EC50 = 7.90 µM. Other compounds from the NCATS libraries such as the H1 antihistamine oxatomide (>5-log reduction), emetine, amsacrine an intercalator (NCGC0015113), MLS003116111-01, NCGC00247785-13, and MLS00699295-01 were found to effectively reduce VEEV viral replication in plaque assays. Kinetic methods demonstrated time-dependent inhibition by the hybrid inhibitors of the protease with NCGC00488909-01 (Ki = 3 µM) and NCGC00484087 (Ki = 5 µM). Rates of inactivation by CA074 in the presence of 6 mM CaCl2, MnCl2, or MgCl2 were measured with varying concentrations of inhibitor, Mg2+ and Mn2+ slightly enhanced inhibitor binding (3 to 6-fold). CA074 inhibited not only the VEEV nsP2 protease but also that of CHIKV and WEEV.


Assuntos
Cisteína Proteases , Vírus da Encefalite Equina Venezuelana , Animais , Cavalos , Replicação Viral , Inibidores de Cisteína Proteinase/farmacologia
2.
ACS Infect Dis ; 8(10): 2133-2148, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36102590

RESUMO

Polymers of d-glutamic acid (PDGA) form the capsule of the highly virulent Ames strain of B. anthracis. PDGA is antiphagocytic and weakly immunogenic; it enables the bacteria to evade the innate immune responses. CapD is an enzyme that catalyzes the covalent anchoring of PDGA. CapD is an Ntn-amido hydrolase that utilizes an internal Thr-352 as its nucleophile and general acid and base. An internal cleavage produces a free N-terminal Thr-352 and a short and long polypeptide chain. The chains were circularly permuted (CP) to move Thr-352 to the N-terminus of the polypeptide. We previously showed that a branched PEG-CapDS334C-CP could protect mice (80% survival) against a 5 LD50 challenge with B. anthracis Ames without the use of antibiotics, monoclonals, or vaccines. In attempts to improve the in vivo circulation time of CapD and enhance its avidity to its polymeric substrate, an Fc-domain of a mouse IgG1 was fused to CapDS334C-CP and the linker length and sequence were optimized. The resulting construct, Fc-CapDS334C-CP, then was pegylated with a linear 2 kDa mPEG at S334C to produce mPEG-Fc-CapDS334C-CP. Interestingly, the fusion of the Fc-domain and incorporation of the S334C mutation imparted acid stability, but slightly reduced the kcat (∼ 2-fold lower). In vivo, the measured protein concentration in sera was higher for the Fc-fusion constructs compared to the mPEG-Fc-CapDS334C-CP. However, the exposure calculated from measured sera enzymatic activity was higher for the mPEG-CapDS334C-CP. The pegylated Fc-fusion was less active than the PEG-CapDS334C-CP, but detectable in sera at 24 h by immunoblot. Here we describe the engineering of a soluble, active, pegylated Fc-fusion of B. anthracis CapD (mPEG-Fc-CapD-CP) with activity in vitro, in serum, and on encapsulated bacteria.


Assuntos
Antraz , Bacillus anthracis , Animais , Antraz/tratamento farmacológico , Antraz/microbiologia , Antibacterianos/metabolismo , Bacillus anthracis/genética , Ácido Glutâmico/metabolismo , Hidrolases/metabolismo , Imunoglobulina G/metabolismo , Camundongos , Polietilenoglicóis
3.
ACS Infect Dis ; 7(6): 1483-1502, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34019767

RESUMO

Viral proteases are highly specific and recognize conserved cleavage site sequences of ∼6-8 amino acids. Short stretches of homologous host-pathogen sequences (SSHHPS) can be found spanning the viral protease cleavage sites. We hypothesized that these sequences corresponded to specific host protein targets since >40 host proteins have been shown to be cleaved by Group IV viral proteases and one Group VI viral protease. Using PHI-BLAST and the viral protease cleavage site sequences, we searched the human proteome for host targets and analyzed the hit results. Although the polyprotein and host proteins related to the suppression of the innate immune responses may be the primary targets of these viral proteases, we identified other cleavable host proteins. These proteins appear to be related to the virus-induced phenotype associated with Group IV viruses, suggesting that information about viral pathogenesis may be extractable directly from the viral genome sequence. Here we identify sequences cleaved by the SARS-CoV-2 papain-like protease (PLpro) in vitro within human MYH7 and MYH6 (two cardiac myosins linked to several cardiomyopathies), FOXP3 (an X-linked Treg cell transcription factor), ErbB4 (HER4), and vitamin-K-dependent plasma protein S (PROS1), an anticoagulation protein that prevents blood clots. Zinc inhibited the cleavage of these host sequences in vitro. Other patterns emerged from multispecies sequence alignments of the cleavage sites, which may have implications for the selection of animal models and zoonosis. SSHHPS/nsP is an example of a sequence-specific post-translational silencing mechanism.


Assuntos
Papaína , Peptídeo Hidrolases , SARS-CoV-2/enzimologia , Proteases Virais/metabolismo , Sequência de Aminoácidos , Miosinas Cardíacas/química , Fatores de Transcrição Forkhead/química , Humanos , Cadeias Pesadas de Miosina/química , Papaína/metabolismo , Peptídeo Hidrolases/metabolismo , Proteína S/química , Receptor ErbB-4/química
4.
Antiviral Res ; 164: 106-122, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30742841

RESUMO

The alphaviral nonstructural protein 2 (nsP2) cysteine proteases (EC 3.4.22.-) are essential for the proteolytic processing of the nonstructural (ns) polyprotein and are validated drug targets. A common secondary role of these proteases is to antagonize the effects of interferon (IFN). After delineating the cleavage site motif of the Venezuelan equine encephalitis virus (VEEV) nsP2 cysteine protease, we searched the human genome to identify host protein substrates. Here we identify a new host substrate of the VEEV nsP2 protease, human TRIM14, a component of the mitochondrial antiviral-signaling protein (MAVS) signalosome. Short stretches of homologous host-pathogen protein sequences (SSHHPS) are present in the nonstructural polyprotein and TRIM14. A 25-residue cyan-yellow fluorescent protein TRIM14 substrate was cleaved in vitro by the VEEV nsP2 protease and the cleavage site was confirmed by tandem mass spectrometry. A TRIM14 cleavage product also was found in VEEV-infected cell lysates. At least ten other Group IV (+)ssRNA viral proteases have been shown to cleave host proteins involved in generating the innate immune responses against viruses, suggesting that the integration of these short host protein sequences into the viral protease cleavage sites may represent an embedded mechanism of IFN antagonism. This interference mechanism shows several parallels with those of CRISPR/Cas9 and RNAi/RISC, but with a protease recognizing a protein sequence common to both the host and pathogen. The short host sequences embedded within the viral genome appear to be analogous to the short phage sequences found in a host's CRISPR spacer sequences. To test this algorithm, we applied it to another Group IV virus, Zika virus (ZIKV), and identified cleavage sites within human SFRP1 (secreted frizzled related protein 1), a retinal Gs alpha subunit, NT5M, and Forkhead box protein G1 (FOXG1) in vitro. Proteolytic cleavage of these proteins suggests a possible link between the protease and the virus-induced phenotype of ZIKV. The algorithm may have value for selecting cell lines and animal models that recapitulate virus-induced phenotypes, predicting host-range and susceptibility, selecting oncolytic viruses, identifying biomarkers, and de-risking live virus vaccines. Inhibitors of the proteases that utilize this mechanism may both inhibit viral replication and alleviate suppression of the innate immune responses.


Assuntos
Cisteína Proteases/metabolismo , Vírus da Encefalite Equina Venezuelana/enzimologia , Proteínas Virais/metabolismo , Zika virus/enzimologia , 5'-Nucleotidase/metabolismo , Linhagem Celular , Inibidores de Cisteína Proteinase/farmacologia , Vírus da Encefalite Equina Venezuelana/patogenicidade , Encefalomielite Equina Venezuelana/virologia , Fatores de Transcrição Forkhead/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteólise , Replicação Viral/efeitos dos fármacos , Zika virus/patogenicidade , Infecção por Zika virus/virologia
5.
J Vis Exp ; (154)2019 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-31904018

RESUMO

Alphaviral enzymes are synthesized in a single polypeptide. The nonstructural polyprotein (nsP) is processed by its nsP2 cysteine protease to produce active enzymes essential for viral replication. Viral proteases are highly specific and recognize conserved cleavage site motif sequences (~6-8 amino acids). In several Group IV viruses, the nsP protease(s) cleavage site motif sequences can be found in specific host proteins involved in generating the innate immune responses and, in some cases, the targeted proteins appear to be linked to the virus-induced phenotype. These viruses utilize short stretches of homologous host-pathogen protein sequences (SSHHPS) for targeted destruction of host proteins. To identify SSHHPS the viral protease cleavage site motif sequences can be inputted into BLAST and the host genome(s) can be searched. Cleavage initially can be tested using the purified nsP viral protease and fluorescence resonance energy transfer (FRET) substrates made in E. coli. The FRET substrates contain cyan and yellow fluorescent protein and the cleavage site sequence (CFP-sequence-YFP). This protease assay can be used continuously in a plate reader or discontinuously in SDS-PAGE gels. Models of the bound peptide substrates can be generated in silico to guide substrate selection and mutagenesis studies. CFP/YFP substrates have also been utilized to identify protease inhibitors. These in vitro and in silico methods can be used in combination with cell-based assays to determine if the targeted host protein affects viral replication.


Assuntos
Simulação por Computador , Interações Hospedeiro-Patógeno , Proteínas Virais/química , Sequência de Aminoácidos , Cisteína Proteases/química , Cisteína Proteases/genética , Cisteína Proteases/metabolismo , Humanos , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeos/metabolismo , Especificidade da Espécie , Especificidade por Substrato , Zika virus/metabolismo
6.
Biochemistry ; 56(47): 6221-6230, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29064679

RESUMO

The alphaviral nsP2 cysteine protease of the Venezuelan equine encephalitis virus (VEEV) is a validated antiviral drug target. Clan CN proteases contain a cysteine protease domain that is intimately packed with an S-adenosyl-l-methionine-dependent RNA methyltransferase (SAM MTase) domain. Within a cleft formed at the interface of these two domains, the peptide substrate is thought to bind. The nucleophilic cysteine can be found within a conserved motif, 475NVCWAK480, which differs from that of papain (22CGSCWAFS29). Mutation of the motif residue, N475, to alanine unexpectedly produced a self-inhibited state in which the N-terminal residues flipped into the substrate-binding cleft. Notably, the N-terminal segment was not hydrolyzed-consistent with a catalytically incompetent state. The N475A mutation resulted in a 70-fold decrease in kcat/Km. A side chain-substrate interaction was predicted by the structure; the S701A mutation led to a 17-fold increase in Km. An Asn at the n-2 position relative to the Cys was also found in the coronaviral papain-like proteases/deubiquitinases (PLpro) of the SARS and MERS viruses, and in several papain-like human ubiquitin specific proteases (USP). The large conformational change in the N475A variant suggests that Asn-475 plays an important role in stabilizing the N-terminal residues and in orienting the carbonyl during nucleophilic attack but does not directly hydrogen bond the oxyanion. The state trapped in crystallo is an unusual result of site-directed mutagenesis but reveals the role of this highly conserved Asn and identifies key substrate-binding contacts that may be exploited by peptide-like inhibitors.


Assuntos
Cisteína Endopeptidases/química , Vírus da Encefalite Equina Venezuelana/enzimologia , Retroalimentação Fisiológica , Mutação , Proteínas Virais/química , Sequência de Aminoácidos , Sítios de Ligação , Ligação Competitiva , Domínio Catalítico , Cristalografia por Raios X , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Humanos , Hidrólise , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Homologia de Sequência , Proteínas Virais/genética , Proteínas Virais/metabolismo
7.
Biochemistry ; 55(21): 3007-19, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27030368

RESUMO

The Venezuelan equine encephalitis virus (VEEV) nonstructural protein 2 (nsP2) cysteine protease (EC 3.4.22.-) is essential for viral replication and is involved in the cytopathic effects (CPE) of the virus. The VEEV nsP2 protease is a member of MEROPS Clan CN and characteristically contains a papain-like protease linked to an S-adenosyl-l-methionine-dependent RNA methyltransferase (SAM MTase) domain. The protease contains an alternative active site motif, (475)NVCWAK(480), which differs from papain's (CGS(25)CWAFS), and the enzyme lacks a transition state-stabilizing residue homologous to Gln-19 in papain. To understand the roles of conserved residues in catalysis, we determined the structure of the free enzyme and the first structure of an inhibitor-bound alphaviral protease. The peptide-like E64d inhibitor was found to bind beneath a ß-hairpin at the interface of the SAM MTase and protease domains. His-546 adopted a conformation that differed from that found in the free enzyme; one or both of the conformers may assist in leaving group departure of either the amine or Cys thiolate during the catalytic cycle. Interestingly, E64c (200 µM), the carboxylic acid form of the E64d ester, did not inhibit the nsP2 protease. To identify key residues involved in substrate binding, a number of mutants were analyzed. Mutation of the motif residue, N475A, led to a 24-fold reduction in kcat/Km, and the conformation of this residue did not change after inhibition. N475 forms a hydrogen bond with R662 in the SAM MTase domain, and the R662A and R662K mutations both led to 16-fold decreases in kcat/Km. N475 forms the base of the P1 binding site and likely orients the substrate for nucleophilic attack or plays a role in product release. An Asn homologous to N475 is similarly found in coronaviral papain-like proteases (PLpro) of the Severe Acute Respiratory Syndrome (SARS) virus and Middle East Respiratory Syndrome (MERS) virus. Mutation of another motif residue, K480A, led to a 9-fold decrease in kcat and kcat/Km. K480 likely enhances the nucleophilicity of the Cys. Consistent with our substrate-bound models, the SAM MTase domain K706A mutation increased Km 4.5-fold to 500 µM. Within the ß-hairpin, the N545A mutation slightly but not significantly increased kcat and Km. The structures and identified active site residues may facilitate the discovery of protease inhibitors with antiviral activity.


Assuntos
Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Vírus da Encefalite Equina Venezuelana/enzimologia , Mutação/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Cisteína Endopeptidases/metabolismo , Hidrólise , Cinética , Modelos Moleculares , Papaína/metabolismo , Conformação Proteica , S-Adenosilmetionina/metabolismo , Homologia de Sequência de Aminoácidos , Proteínas não Estruturais Virais/metabolismo
8.
J Med Chem ; 56(13): 5275-87, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23815100

RESUMO

In this study, we describe novel inhibitors against Francisella tularensis SchuS4 FabI identified from structure-based in silico screening with integrated molecular dynamics simulations to account for induced fit of a flexible loop crucial for inhibitor binding. Two 3-substituted indoles, 54 and 57, preferentially bound the NAD(+) form of the enzyme and inhibited growth of F. tularensis SchuS4 at concentrations near that of their measured Ki. While 57 was species-specific, 54 showed a broader spectrum of growth inhibition against F. tularensis , Bacillus anthracis , and Staphylococcus aureus . Binding interaction analysis in conjunction with site-directed mutagenesis revealed key residues and elements that contribute to inhibitor binding and species specificity. Mutation of Arg-96, a poorly conserved residue opposite the loop, was unexpectedly found to enhance inhibitor binding in the R96G and R96M variants. This residue may affect the stability and closure of the flexible loop to enhance inhibitor (or substrate) binding.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Francisella tularensis/efeitos dos fármacos , Indóis/farmacologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Biologia Computacional/métodos , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/química , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/genética , Inibidores Enzimáticos/química , Francisella tularensis/genética , Francisella tularensis/crescimento & desenvolvimento , Humanos , Indóis/química , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
9.
Toxins (Basel) ; 5(2): 224-48, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23364220

RESUMO

Vitetta and colleagues identified and characterized a putative vascular leak peptide (VLP) consensus sequence in recombinant ricin toxin A-chain (RTA) that contributed to dose-limiting human toxicity when RTA was administered intravenously in large quantities during chemotherapy. We disrupted this potentially toxic site within the more stable RTA1-33/44-198 vaccine immunogen and determined the impact of these mutations on protein stability, structure and protective immunogenicity using an experimental intranasal ricin challenge model in BALB/c mice to determine if the mutations were compatible. Single amino acid substitutions at the positions corresponding with RTA D75 (to A, or N) and V76 (to I, or M) had minor effects on the apparent protein melting temperature of RTA1-33/44-198 but all four variants retained greater apparent stability than the parent RTA. Moreover, each VLP(-) variant tested provided protection comparable with that of RTA1-33/44-198 against supralethal intranasal ricin challenge as judged by animal survival and several biomarkers. To understand better how VLP substitutions and mutations near the VLP site impact epitope structure, we introduced a previously described thermal stabilizing disulfide bond (R48C/T77C) along with the D75N or V76I substitutions in RTA1-33/44-198. The D75N mutation was compatible with the adjacent stabilizing R48C/T77C disulfide bond and the T(m) was unaffected, whereas the V76I mutation was less compatible with the adjacent disulfide bond involving C77. A crystal structure of the RTA1-33/44-198 R48C/T77C/D75N variant showed that the structural integrity of the immunogen was largely conserved and that a stable immunogen could be produced from E. coli. We conclude that it is feasible to disrupt the VLP site in RTA1-33/44-198 with little or no impact on apparent protein stability or protective efficacy in mice and such variants can be stabilized further by introduction of a disulfide bond.


Assuntos
Substâncias para a Guerra Química/toxicidade , Peptídeos/administração & dosagem , Ricina/genética , Ricina/toxicidade , Vacinas Sintéticas/administração & dosagem , Administração Intranasal , Animais , Glicemia/análise , Líquido da Lavagem Broncoalveolar/química , Feminino , Injeções Intramusculares , Dose Letal Mediana , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Peptídeos/genética , Ricina/administração & dosagem , Ricina/química
10.
Biochemistry ; 51(6): 1199-212, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22257032

RESUMO

γ-Glutamyl transpeptidase (GGT) is a two-substrate enzyme that plays a central role in glutathione metabolism and is a potential target for drug design. GGT catalyzes the cleavage of γ-glutamyl donor substrates and the transfer of the γ-glutamyl moiety to an amine of an acceptor substrate or water. Although structures of bacterial GGT have revealed details of the protein-ligand interactions at the donor site, the acceptor substrate site is relatively undefined. The recent identification of a species-specific acceptor site inhibitor, OU749, suggests that these inhibitors may be less toxic than glutamine analogues. Here we investigated the donor and acceptor substrate preferences of Bacillus anthracis GGT (CapD) and applied computational approaches in combination with kinetics to probe the structural basis of the enzyme's substrate and inhibitor binding specificities and compare them with human GGT. Site-directed mutagenesis studies showed that the R432A and R520S variants exhibited 6- and 95-fold decreases in hydrolase activity, respectively, and that their activity was not stimulated by the addition of the l-Cys acceptor substrate, suggesting an additional role in acceptor binding and/or catalysis of transpeptidation. Rat GGT (and presumably HuGGT) has strict stereospecificity for L-amino acid acceptor substrates, while CapD can utilize both L- and D-acceptor substrates comparably. Modeling and kinetic analysis suggest that R520 and R432 allow two alternate acceptor substrate binding modes for L- and D-acceptors. R432 is conserved in Francisella tularensis, Yersinia pestis, Burkholderia mallei, Helicobacter pylori and Escherichia coli, but not in human GGT. Docking and MD simulations point toward key residues that contribute to inhibitor and acceptor substrate binding, providing a guide to designing novel and specific GGT inhibitors.


Assuntos
Proteínas de Bactérias/química , gama-Glutamiltransferase/química , Animais , Bacillus anthracis/enzimologia , Cápsulas Bacterianas/química , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Domínio Catalítico , Biologia Computacional/métodos , Glutationa/metabolismo , Humanos , Ligantes , Camundongos , Ligação Proteica , Ratos , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Sulfonamidas/metabolismo , Sulfonamidas/farmacologia , Suínos , Tiadiazóis/metabolismo , Tiadiazóis/farmacologia , gama-Glutamiltransferase/antagonistas & inibidores , gama-Glutamiltransferase/genética
11.
J Cell Biochem ; 96(4): 839-49, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16149071

RESUMO

The biological effects of organophosphorous (OP) chemical warfare nerve agents (CWNAs) are exerted by inhibition of acetylcholinesterase (AChE), which prevents the hydrolysis of the neurotransmitter acetylcholine, leading to hypercholinergy, seizures/status epilepticus, respiratory/cardiovascular failure, and potentially death. Current investigations show that bioscavenger therapy using purified fetal bovine AChE in rodents and non-human primates and the more recently tested human butyrylcholinesterase, is a promising treatment for protection against multiple LD(50) CWNA exposures. Potential impediments, due to the complex structure of the enzyme, purification effort, resources, and cost have necessitated alternative approaches. Therefore, we investigated the effects of transcriptional inducers to enhance the expression of AChE to achieve sufficient protection against OP poisoning. Trichostatin A (TSA), an inhibitor of histone deacetylase that de-condenses the chromatin, thereby increasing the binding of transcription factors and mRNA synthesis, was evaluated for induction of AChE expression in various neuronal cell lines. Dose-response curves showed that a concentration of 333 nM TSA was optimal in inducing AChE expression. In Neuro-2A cells, TSA at 333 nM increased the extracellular AChE activity approximately 3-4 fold and intracellular enzyme activity 10-fold. Correlating with the AChE induction, TSA pre-treatment significantly protected the cells against exposure to the organophosphate diisopropylfluorophosphate, a surrogate for the chemical warfare agents soman and sarin. These studies indicate that transcriptional inducers such as TSA up-regulate AChE, which then can bioscavenge any organophosphates present, thereby protecting the cells from OP-induced cytotoxicity. In conclusion, transcriptional inducers are prospective new methods to protect against CWNA exposure.


Assuntos
Acetilcolinesterase/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Histona Acetiltransferases/antagonistas & inibidores , Ácidos Hidroxâmicos/farmacologia , Organofosfatos/antagonistas & inibidores , Acetilcolinesterase/sangue , Acetilcolinesterase/deficiência , Animais , Linhagem Celular Tumoral , Cromatografia de Afinidade , Relação Dose-Resposta a Droga , Isoflurofato/antagonistas & inibidores , Isoflurofato/toxicidade , Camundongos , Fármacos Neuroprotetores/farmacologia , Organofosfatos/toxicidade , Procainamida/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA