Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 93(45): 14966-14975, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34726890

RESUMO

The unanticipated discovery of recent ultra-high-resolution ion mobility spectrometry (IMS) measurements revealing that isotopomers─compounds that differ only in the isotopic substitution sites─can be separated has raised questions as to the physical basis for their separation. A study comparing IMS separations for two isotopomer sets in conjunction with theory and simulations accounting for ion rotational effects provides the first-ever prediction of rotation-mediated shifts. The simulations produce observable mobility shifts due to differences in gas-ion collision frequency and translational-to-rotational energy transfer. These differences can be attributed to distinct changes in the moment of inertia and center of mass between isotopomers. The simulations are in broad agreement with the observed experiments and consistent with relative mobility differences between isotopomers. These results provide a basis for refining IMS theory and a new foundation to obtain additional structural insights through IMS.


Assuntos
Espectrometria de Mobilidade Iônica
2.
J Phys Chem B ; 125(29): 8107-8116, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34270248

RESUMO

Peptides with penultimate proline residues undergo trans → cis isomerization of the Phe1-Pro2 peptide bond followed by spontaneous bond cleavage at the Pro2-Xxx3 bond (where Xxx is another amino acid residue), leading to cleavage of the Pro2-Xxx3 bond and formation of a diketopiperazine (DKP). In this paper, ion mobility spectrometry and mass spectrometry techniques were used to study the dissociation kinetics of nine peptides [Phe1-Pro2-Glyn-Lysn+3 (n = 1-9)] in ethanol. Shorter (n = 1-3) peptides are found to be more stable than longer (n = 4-9) peptides. Alanine substitution studies indicate that, when experiments are initiated, the Phe1-Pro2 bond of the n = 9 peptide exists exclusively in the cis configuration, while the n = 1-8 peptides appear to exist initially with both cis- and trans-Phe1-Pro2 configured bonds. Molecular dynamics simulations indicate that intramolecular hydrogen bonding interactions stabilize conformations of shorter peptides, thus inhibiting DKP formation. Similar stabilizing interactions appear less frequently in longer peptides. In addition, in smaller peptides, the N-terminal amino group is more likely to be charged compared to the same group in longer peptides, which would inhibit the dissociation through the DKP formation mechanism. Analysis of temperature-dependent kinetics measurements provides insight about the mechanism of bond cleavage. The analysis gives the following transition state thermochemistry: ΔG⧧ values range from 94.6 ± 0.9 to 101.5 ± 1.9 kJ·mol-1, values of ΔH⧧ range from 89.1 ± 0.9 to 116.7 ± 1.5 kJ·mol-1, and ΔS⧧ values range from -25.4 ± 2.6 to 50.8 ± 4.2 J·mol-1·K-1. Proposed mechanisms and thermochemistry are discussed.


Assuntos
Dicetopiperazinas , Peptídeos , Ligação de Hidrogênio , Cinética , Prolina
3.
Anal Chem ; 92(22): 14976-14982, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33136380

RESUMO

The collision cross section (CCS) is an important property that aids in the structural characterization of molecules. Here, we investigated the CCS calibration accuracy with traveling wave ion mobility spectrometry (TWIMS) separations in structures for lossless ion manipulations (SLIM) using three sets of calibrants. A series of singly negatively charged phospholipids and bile acids were calibrated in nitrogen buffer gas using two different TW waveform profiles (square and sine) and amplitudes (20, 25, and 30 V0-p). The calibration errors for the three calibrant sets (Agilent tuning mixture, polyalanine, and one assembled in-house) showed negligible differences using a sine-shaped TW waveform. Calibration errors were all within 1-2% of the drift tube ion mobility spectrometry (DTIMS) measurements, with lower errors for sine waveforms, presumably due to the lower average and maximum fields experienced by ions. Finally, ultrahigh-resolution multipass (long path length) SLIM TWIMS separations demonstrated improved CCS calibration for phospholipid and bile acid isomers.


Assuntos
Espectrometria de Mobilidade Iônica/métodos , Ácidos e Sais Biliares/química , Calibragem , Eletrodos , Espectrometria de Mobilidade Iônica/instrumentação , Isomerismo , Espectrometria de Massas , Peptídeos/química , Fosfolipídeos/química
4.
Anal Chem ; 92(7): 5004-5012, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32142606

RESUMO

Antibody-drug conjugates (ADCs) have recently gained traction in the biomedical community due to their promise for human therapeutics and an alternative to chemotherapy for cancer. Crucial metrics for ADC efficacy, safety, and selectivity are their drug-antibody ratios (DARs). However, DAR characterization (i.e., determining the average number of conjugated drugs on the antibody) through analytical methods remains challenging due to the heterogeneity of drug conjugation as well as the numerous post-translational modifications possible in the monoclonal antibody. Herein, we report on the use of high-resolution ion mobility spectrometry separations in structures for lossless ion manipulations coupled to mass spectrometry (SLIM IMS-MS) for the rapid and simultaneous characterization of the drug load profile (i.e., stoichiometric distribution of the number of conjugated drugs present on the mAb), determination of the weighted average DAR in both the heavy and light chains of a model antibody-drug conjugate, and calculation of the overall DAR of the ADC. After chemical reduction of the ADC and a subsequent 31.5 m SLIM IMS separation, the various drug-bound antibody species could be well resolved for both chains. We also show significantly higher resolution separations were possible for these large ions with SLIM IMS as compared to ones performed on a commercially available (1 m) drift tube IMS-MS platform. We expect high-resolution SLIM IMS separations will augment the existing toolbox for ADC characterization, particularly to enable the rapid optimization of DAR for a given ADC and thus better understand its potential toxicity and potency.


Assuntos
Anticorpos Monoclonais/química , Imunoconjugados/química , Preparações Farmacêuticas/química , Humanos , Espectrometria de Massas , Estrutura Molecular
5.
J Am Soc Mass Spectrom ; 30(6): 932-945, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30980379

RESUMO

The work presented below is related to our companion paper in this issue, entitled: Substance P in solution: trans-to-cis configurational changes of penultimate prolines initiate non-enzymatic peptide bond cleavages. Two-dimensional ion mobility spectrometry (IMS-IMS) and mass spectrometry techniques are used to investigate structural transitions for [M+3H]3+ ions of substance P (subP) upon collisional activation (CA) in the gas phase. In this approach, different conformations of ions having a specified mobility are selected after an initial IMS separation, collisionally activated to produce new conformers, and these product structures are separated again using a second IMS region. In this way, it is possible to follow folding and unfolding transitions of different conformations. The analysis shows evidence for five conformations. Unlike other systems, every transition is irreversible. Studies as a function of activation voltage are used to discern pathways of structural changes prior to reaching the energy required for dissociation. Thresholds associated with the onsets of transitions are calibrated to obtain estimates of the energetic barriers between different structures and semi-quantitative potential energy diagrams are presented. Overall, barriers associated with structural transitions of [subP+3H]3+ in the absence of solvent are on the order of ~ 40 kJ mol-1, substantially lower than the ~ 90 kJ mol-1 required for some similar structural transitions in solutions of ethanol. Comparisons of the transition energies in the gas phase with thermochemistry for similar transitions in solution provide clues about why reverse transitions are prohibited. Graphical Abstract.

6.
Eur J Mass Spectrom (Chichester) ; 25(1): 73-81, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30773926

RESUMO

Biomolecular degradation plays a key role in proteostasis. Typically, proteolytic enzymes degrade proteins into smaller peptides by breaking amino acid bonds between specific residues. Cleavage around proline residues is often missed and requires highly specific enzymes for peptide processing due to the cyclic proline side-chain. However, degradation can occur spontaneously (i.e. in the absence of enzymes). In this study, the influence of the first residue on the stability of a series of penultimate proline containing peptides, with the sequence Xaa-Pro-Gly-Gly (where Xaa is any amino acid), is investigated with mass spectrometry techniques. Peptides were incubated as mixtures at various solution temperatures (70℃ to 90℃) and were periodically sampled over the duration of the experiment. At elevated temperatures, we observe dissociation after the Xaa-Pro motif for all sequences, but at different rates. Transition state thermochemistry was obtained by studying the temperature-dependent kinetics and although all peptides show relatively small differences in the transition state free energies (∼95 kJ/mol), there is significant variability in the transition state entropy and enthalpy. This demonstrates that the side-chain of the first amino acid has a significant influence on the stability of the Xaa-Pro sequence. From these data, we demonstrate the ability to simultaneously measure the dissociation kinetics and relative transition state thermochemistries for a mixture of peptides, which vary only in the identity of the N-terminal amino acid.


Assuntos
Espectrometria de Massas/métodos , Peptídeos/química , Sequência de Aminoácidos , Cinética , Prolina/química , Estabilidade Proteica , Proteínas/química , Termodinâmica
7.
Anal Chem ; 87(10): 5132-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25892116

RESUMO

A new means of acquiring overtone mobility spectrometry (OMS) data sets that allows distributions of ions for a prescribed overtone number is described. In this approach, the drift fields applied to specific OMS drift regions are varied to make it possible to select different ions from a specific overtone that is resonant over a range of applied frequencies. This is accomplished by applying different fields for fixed ratios of time while scanning the applied frequency. The ability to eliminate peaks from all but a single overtone region overcomes a significant limitation associated with OMS analysis of unknowns, especially in mixtures. Specifically, a priori knowledge via selection of the overtone used to separate ions makes it possible to directly determine ion mobilities for unknown species and collision cross sections (assuming that the ion charge state is known). We refer to this selection method of operation as selected overtone mobility spectrometry (SOMS). A simple theoretical description of the SOMS approach is provided. Simulations are carried out and discussed in order to illustrate the advantages and disadvantages of SOMS compared with traditional OMS. Finally, the SOMS method (and its distinction from OMS) is demonstrated experimentally by examining a mixture of peptides generated by enzymatic digestion of the equine cytochrome c with trypsin.


Assuntos
Espectrometria de Massas/métodos , Sequência de Aminoácidos , Animais , Citocromos c/química , Citocromos c/metabolismo , Modelos Teóricos , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Peptídeos/química , Substância P/química , Tripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA