Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(8): e0304063, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39172771

RESUMO

Research on liver-related conditions requires a robust and efficient method to purify viable hepatocytes, lymphocytes and all other liver resident cells, such as Kupffer or liver sinusoidal endothelial cells. Here we describe a novel purification method using liver enzymatic digestion, followed by a downstream optimized purification. Using this enzymatic digestion protocol, the resident liver cells as well as viable hepatocytes could be captured, compared to the classical mechanical liver disruption method. Moreover, single-cell RNA-sequencing demonstrated higher quality lymphocyte data in downstream analyses after the liver enzymatic digestion, allowing for studying of immunological responses or changes. In order to also understand the peripheral immune landscape, a protocol for lymphocyte purification from mouse systemic whole blood was optimized, allowing for efficient removal of red blood cells. The combination of microbeads and mRNA blockers allowed for a clean blood sample, enabling robust single-cell RNA-sequencing data. These two protocols for blood and liver provide important new methodologies for liver-related studies such as NASH, hepatitis virus infections or cancer research but also for immunology where high-quality cells are indispensable for further downstream assays.


Assuntos
Leucócitos , Fígado , Animais , Camundongos , Fígado/imunologia , Leucócitos/imunologia , Hepatócitos/imunologia , Separação Celular/métodos , Análise de Célula Única/métodos , Camundongos Endogâmicos C57BL , Masculino , Linfócitos/imunologia , Linfócitos/citologia
2.
Hepatology ; 78(5): 1525-1541, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37158243

RESUMO

BACKGROUND AND AIMS: HBV infection is restricted to the liver, where it drives exhaustion of virus-specific T and B cells and pathogenesis through dysregulation of intrahepatic immunity. Our understanding of liver-specific events related to viral control and liver damage has relied almost solely on animal models, and we lack useable peripheral biomarkers to quantify intrahepatic immune activation beyond cytokine measurement. Our objective was to overcome the practical obstacles of liver sampling using fine-needle aspiration and develop an optimized workflow to comprehensively compare the blood and liver compartments within patients with chronic hepatitis B using single-cell RNA sequencing. APPROACH AND RESULTS: We developed a workflow that enabled multi-site international studies and centralized single-cell RNA sequencing. Blood and liver fine-needle aspirations were collected, and cellular and molecular captures were compared between the Seq-Well S 3 picowell-based and the 10× Chromium reverse-emulsion droplet-based single-cell RNA sequencing technologies. Both technologies captured the cellular diversity of the liver, but Seq-Well S 3 effectively captured neutrophils, which were absent in the 10× dataset. CD8 T cells and neutrophils displayed distinct transcriptional profiles between blood and liver. In addition, liver fine-needle aspirations captured a heterogeneous liver macrophage population. Comparison between untreated patients with chronic hepatitis B and patients treated with nucleoside analogs showed that myeloid cells were highly sensitive to environmental changes while lymphocytes displayed minimal differences. CONCLUSIONS: The ability to electively sample and intensively profile the immune landscape of the liver, and generate high-resolution data, will enable multi-site clinical studies to identify biomarkers for intrahepatic immune activity in HBV and beyond.


Assuntos
Hepatite B Crônica , Animais , Humanos , Hepatite B Crônica/tratamento farmacológico , Biópsia por Agulha Fina , Vírus da Hepatite B/genética , Fígado/patologia , Linfócitos T CD8-Positivos , Biomarcadores , Análise de Sequência de RNA
3.
PLoS Pathog ; 15(9): e1008009, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31536612

RESUMO

Human noroviruses (HuNoVs) are the most common cause of foodborne illness, with a societal cost of $60 billion and 219,000 deaths/year. The lack of robust small animal models has significantly hindered the understanding of norovirus biology and the development of effective therapeutics. Here we report that HuNoV GI and GII replicate to high titers in zebrafish (Danio rerio) larvae; replication peaks at day 2 post infection and is detectable for at least 6 days. The virus (HuNoV GII.4) could be passaged from larva to larva two consecutive times. HuNoV is detected in cells of the hematopoietic lineage and the intestine, supporting the notion of a dual tropism. Antiviral treatment reduces HuNoV replication by >2 log10, showing that this model is suited for antiviral studies. Zebrafish larvae constitute a simple and robust replication model that will largely facilitate studies of HuNoV biology and the development of antiviral strategies.


Assuntos
Norovirus/fisiologia , Norovirus/patogenicidade , Replicação Viral/fisiologia , Peixe-Zebra/virologia , Animais , Antivirais/administração & dosagem , Infecções por Caliciviridae/virologia , Doenças Transmitidas por Alimentos/virologia , Gastroenterite/virologia , Interações entre Hospedeiro e Microrganismos , Humanos , Larva/virologia , Metagenômica , Modelos Animais , Norovirus/genética , Cultura de Vírus/métodos , Replicação Viral/efeitos dos fármacos
4.
mSphere ; 4(1)2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674646

RESUMO

Diarrhea remains one of the most common causes of deaths in children. A limited number of studies have investigated the prevalence of enteric pathogens in Cameroon, and as in many other African countries, the cause of many diarrheal episodes remains unexplained. A proportion of these unknown cases of diarrhea are likely caused by yet-unidentified viral agents, some of which could be the result of (recent) interspecies transmission from animal reservoirs, like bats. Using viral metagenomics, we screened fecal samples of 221 humans (almost all with gastroenteritis symptoms) between 0 and 89 years of age with different degrees of bat contact. We identified viruses belonging to families that are known to cause gastroenteritis such as Adenoviridae, Astroviridae, Caliciviridae, Picornaviridae, and Reoviridae Interestingly, a mammalian orthoreovirus, picobirnaviruses, a smacovirus, and a pecovirus were also found. Although there was no evidence of interspecies transmission of the most common human gastroenteritis-related viruses (Astroviridae, Caliciviridae, and Reoviridae), the phylogenies of the identified orthoreovirus, picobirnavirus, and smacovirus indicate a genetic relatedness of these viruses identified in stools of humans and those of bats and/or other animals. These findings points out the possibility of interspecies transmission or simply a shared host of these viruses (bacterial, fungal, parasitic, …) present in both animals (bats) and humans. Further screening of bat viruses in humans or vice versa will elucidate the epidemiological potential threats of animal viruses to human health. Furthermore, this study showed a huge diversity of highly divergent novel phages, thereby expanding the existing phageome considerably.IMPORTANCE Despite the availability of diagnostic tools for different enteric viral pathogens, a large fraction of human cases of gastroenteritis remains unexplained. This could be due to pathogens not tested for or novel divergent viruses of potential animal origin. Fecal virome analyses of Cameroonians showed a very diverse group of viruses, some of which are genetically related to those identified in animals. This is the first attempt to describe the gut virome of humans from Cameroon. Therefore, the data represent a baseline for future studies on enteric viral pathogens in this area and contribute to our knowledge of the world's virome. The studies also highlight the fact that more viruses may be associated with diarrhea than the typical known ones. Hence, it provides meaningful epidemiological information on diarrhea-related viruses in this area.


Assuntos
Diarreia/epidemiologia , Fezes/virologia , Viroses/epidemiologia , Vírus/classificação , Vírus/isolamento & purificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Camarões , Criança , Pré-Escolar , Diarreia/virologia , Transmissão de Doença Infecciosa , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Metagenômica , Pessoa de Meia-Idade , Filogenia , Prevalência , Viroses/virologia , Vírus/genética , Adulto Jovem , Zoonoses/epidemiologia , Zoonoses/virologia
5.
Infect Genet Evol ; 43: 135-45, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27184192

RESUMO

Next-generation sequencing (NGS) technologies are becoming increasingly accessible, leading to an expanded interest in the composition of the porcine enteric virome. In the present study, the fecal virome of a non-diarrheic Belgian piglet was determined. Although the virome of only a single piglet was analyzed, some interesting data were obtained, including the second complete genome of a pig group C rotavirus (RVC). This Belgian strain was only distantly related to the only other completely characterized pig RVC strain, Cowden. Its relatedness to RVC strains from other host species was also analyzed and the porcine strain found in our study was only distantly related to RVCs detected in humans and cows. The gene encoding the outer capsid protein VP7 belonged to the rare porcine G3 genotype, which might be serologically distinct from most other pig RVC strains. A putative novel RVC VP6 genotype was identified as well. A group A rotavirus strain also present in this fecal sample contained the rare pig genotype combination G11P[27], but was only partially characterized. Typical pig RVA genotypes I5, A8, and T7 were found for the viral proteins VP6, NSP1, and NSP3, respectively. Interestingly, the fecal virome of the piglet also contained an astrovirus and an enterovirus, of which the complete genomes were characterized. Results of the current study indicate that many viruses may be present simultaneously in fecal samples of non-diarrheic piglets. In this study, these viruses could not be directly associated with any disease, but still they might have had a potential subclinical impact on pig growth performance. The fast evolution of NGS will be a powerful tool for future diagnostics in veterinary practice. Its application will certainly lead to better insights into the relevance of many (sub)clinical enteric viral infections, that may have remained unnoticed using traditional diagnostic techniques. This will stimulate the development of new and durable prophylactic measures to improve pig health and production.


Assuntos
Fezes/virologia , Infecções por Rotavirus/veterinária , Rotavirus/classificação , Doenças dos Suínos/virologia , Proteínas do Core Viral/genética , Animais , Astroviridae/isolamento & purificação , Bélgica , Enterovirus/isolamento & purificação , Heterogeneidade Genética , Genoma Viral , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Filogenia , Rotavirus/genética , Análise de Sequência de RNA , Suínos
6.
Virol Rep ; 6: 74-80, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32289018

RESUMO

A number of PVs have been described in bats but to the best of our knowledge not from feces. Using a previously described NetoVIR protocol, Eidolon helvum pooled fecal samples (Eh) were treated and sequenced by Illumina next generation sequencing technology. Two complete genomes of novel PVs (EhPV2 and EhPV3) and 3 partial sequences (BATPV61, BATPV890a and BATPV890b) were obtained and analysis showed that the EhPV2 and EhPV3 major capsid proteins cluster with and share 60-64% nucleotide identity with that of Rousettus aegyptiacus PV1, thus representing new species of PVs within the genus Psipapillomavirus. The other PVs clustered in different branches of our phylogenetic tree and may potentially represent novel species and/or genera. This points to the vast diversity of PVs in bats and in Eidolon helvum bats in particular, therefore adding support to the current concept that PV evolution is more complex than merely strict PV-host co-evolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA