Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 43(50): 8744-8755, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-37857485

RESUMO

Mammalian target of rapamycin (mTOR) pathway has emerged as a key molecular mechanism underlying memory processes. Although mTOR inhibition is known to block memory processes, it remains elusive whether and how an enhancement of mTOR signaling may improve memory processes. Here we found in male mice that the administration of VO-OHpic, an inhibitor of the phosphatase and tensin homolog (PTEN) that negatively modulates AKT-mTOR pathway, enhanced auditory fear memory for days and weeks, while it left short-term memory unchanged. Memory enhancement was associated with a long-lasting increase in immature-type dendritic spines of pyramidal neurons into the auditory cortex. The persistence of spine remodeling over time arose by the interplay between PTEN inhibition and memory processes, as VO-OHpic induced only a transient immature spine growth in the somatosensory cortex, a region not involved in long-term auditory memory. Both the potentiation of fear memories and increase in immature spines were hampered by rapamycin, a selective inhibitor of mTORC1. These data revealed that memory can be potentiated over time by the administration of a selective PTEN inhibitor. In addition to disclosing new information on the cellular mechanisms underlying long-term memory maintenance, our study provides new insights on the molecular processes that aid enhancing memories over time.SIGNIFICANCE STATEMENT The neuronal mechanisms that may help improve the maintenance of long-term memories are still elusive. The inhibition of mammalian-target of rapamycin (mTOR) signaling shows that this pathway plays a crucial role in synaptic plasticity and memory formation. However, whether its activation may strengthen long-term memory storage is unclear. We assessed the consequences of positive modulation of AKT-mTOR pathway obtained by VO-OHpic administration, a phosphatase and tensin homolog inhibitor, on memory retention and underlying synaptic modifications. We found that mTOR activation greatly enhanced memory maintenance for weeks by producing a long-lasting increase of immature-type dendritic spines in pyramidal neurons of the auditory cortex. These results offer new insights on the cellular and molecular mechanisms that can aid enhancing memories over time.


Assuntos
Córtex Auditivo , Proteínas Proto-Oncogênicas c-akt , Masculino , Camundongos , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Córtex Auditivo/metabolismo , Espinhas Dendríticas/metabolismo , Tensinas/metabolismo , Memória de Longo Prazo/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Memória de Curto Prazo/fisiologia , Sirolimo/farmacologia , Medo/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Mamíferos
2.
Neuropharmacology ; 99: 577-88, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26319210

RESUMO

Nicotine elicits several behavioural effects on mood as well as on stress and anxiety processes. Recently, it was found that the higher order components of the sensory cortex, such as the secondary auditory cortex Te2, are essential for the long-term storage of remote fear memories. Therefore, in the present study, we examined the effects of acute nicotine injection into the higher order auditory cortex Te2, on the remote emotional memories of either threat or incentive experiences in rats. We found that intra-Te2 nicotine injection decreased the fear-evoked responses to a tone previously paired with footshock. This effect was cue- and dose-specific and was not due to any interference with auditory stimuli processing, innate anxiety and fear processes, or with motor responses. Nicotine acts acutely in the presence of threat stimuli but it did not determine the permanent degradation of the fear-memory trace, since memories tested one week after nicotine injection were unaffected. Remarkably, nicotine did not affect the memory of a similar tone that was paired to incentive stimuli. We conclude from our results that nicotine, when acting acutely in the auditory cortex, relieves the fear charge embedded by learned stimuli.


Assuntos
Córtex Auditivo/efeitos dos fármacos , Medo/efeitos dos fármacos , Memória/efeitos dos fármacos , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Psicotrópicos/administração & dosagem , Animais , Córtex Auditivo/fisiologia , Percepção Auditiva/efeitos dos fármacos , Percepção Auditiva/fisiologia , Cateteres de Demora , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Sinais (Psicologia) , Relação Dose-Resposta a Droga , Eletrochoque , Medo/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Masculino , Memória/fisiologia , Percepção Olfatória/efeitos dos fármacos , Percepção Olfatória/fisiologia , Ratos Wistar , Reflexo de Sobressalto/efeitos dos fármacos , Reflexo de Sobressalto/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA