Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Mol Ther ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39044427

RESUMO

Fetal hemoglobin (HbF) reactivation expression through CRISPR-Cas9 is a promising strategy for the treatment of sickle cell disease (SCD). Here, we describe a genome editing strategy leading to reactivation of HbF expression by targeting the binding sites (BSs) for the lymphoma-related factor (LRF) repressor in the γ-globin promoters. CRISPR-Cas9 treatment in healthy donor (HD) and patient-derived HSPCs resulted in a high frequency of LRF BS disruption and potent HbF synthesis in their erythroid progeny. LRF BS disruption did not impair HSPC engraftment and differentiation but was more efficient in SCD than in HD cells. However, SCD HSPCs showed a reduced engraftment and a myeloid bias compared with HD cells. We detected off-target activity and chromosomal rearrangements, particularly in SCD samples (likely because of the higher overall editing efficiency) but did not impact the target gene expression and HSPC engraftment and differentiation. Transcriptomic analyses showed that the editing procedure results in the up-regulation of genes involved in DNA damage and inflammatory responses, which was more evident in SCD HSPCs. This study provides evidence of efficacy and safety for an editing strategy based on HbF reactivation and highlights the need of performing safety studies in clinically relevant conditions, i.e., in patient-derived HSPCs.

2.
Elife ; 132024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980300

RESUMO

Tardigrades are microscopic animals renowned for their ability to withstand extreme conditions, including high doses of ionizing radiation (IR). To better understand their radio-resistance, we first characterized induction and repair of DNA double- and single-strand breaks after exposure to IR in the model species Hypsibius exemplaris. Importantly, we found that the rate of single-strand breaks induced was roughly equivalent to that in human cells, suggesting that DNA repair plays a predominant role in tardigrades' radio-resistance. To identify novel tardigrade-specific genes involved, we next conducted a comparative transcriptomics analysis across three different species. In all three species, many DNA repair genes were among the most strongly overexpressed genes alongside a novel tardigrade-specific gene, which we named Tardigrade DNA damage Response 1 (TDR1). We found that TDR1 protein interacts with DNA and forms aggregates at high concentration suggesting it may condensate DNA and preserve chromosome organization until DNA repair is accomplished. Remarkably, when expressed in human cells, TDR1 improved resistance to Bleomycin, a radiomimetic drug. Based on these findings, we propose that TDR1 is a novel tardigrade-specific gene conferring resistance to IR. Our study sheds light on mechanisms of DNA repair helping cope with high levels of DNA damage inflicted by IR.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA , Radiação Ionizante , Tardígrados , Transcriptoma , Tardígrados/genética , Tardígrados/metabolismo , Animais , Humanos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica , Dano ao DNA , Tolerância a Radiação/genética
3.
Nat Commun ; 13(1): 6618, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333351

RESUMO

Sickle cell disease and ß-thalassemia affect the production of the adult ß-hemoglobin chain. The clinical severity is lessened by mutations that cause fetal γ-globin expression in adult life (i.e., the hereditary persistence of fetal hemoglobin). Mutations clustering ~200 nucleotides upstream of the HBG transcriptional start sites either reduce binding of the LRF repressor or recruit the KLF1 activator. Here, we use base editing to generate a variety of mutations in the -200 region of the HBG promoters, including potent combinations of four to eight γ-globin-inducing mutations. Editing of patient hematopoietic stem/progenitor cells is safe, leads to fetal hemoglobin reactivation and rescues the pathological phenotype. Creation of a KLF1 activator binding site is the most potent strategy - even in long-term repopulating hematopoietic stem/progenitor cells. Compared with a Cas9-nuclease approach, base editing avoids the generation of insertions, deletions and large genomic rearrangements and results in higher γ-globin levels. Our results demonstrate that base editing of HBG promoters is a safe, universal strategy for treating ß-hemoglobinopathies.


Assuntos
Anemia Falciforme , Talassemia beta , Humanos , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , gama-Globinas/genética , Talassemia beta/genética , Talassemia beta/terapia , Anemia Falciforme/genética , Células-Tronco Hematopoéticas/metabolismo
4.
Elife ; 112022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36341714

RESUMO

Epithelial tissues acquire their integrity and function through the apico-basal polarization of their constituent cells. Proteins of the PAR and Crumbs complexes are pivotal to epithelial polarization, but the mechanistic understanding of polarization is challenging to reach, largely because numerous potential interactions between these proteins and others have been found, without a clear hierarchy in importance. We identify the regionalized and segregated organization of members of the PAR and Crumbs complexes at epithelial apical junctions by imaging endogenous proteins using stimulated-emission-depletion microscopy on Caco-2 cells, and human and murine intestinal samples. Proteins organize in submicrometric clusters, with PAR3 overlapping with the tight junction (TJ) while PALS1-PATJ and aPKC-PAR6ß form segregated clusters that are apical of the TJ and present in an alternated pattern related to actin organization. CRB3A is also apical of the TJ and partially overlaps with other polarity proteins. Of the numerous potential interactions identified between polarity proteins, only PALS1-PATJ and aPKC-PAR6ß are spatially relevant in the junctional area of mature epithelial cells, simplifying our view of how polarity proteins could cooperate to drive and maintain cell polarity.


Many of our organs, including the lungs and the intestine, are lined with a single layer of cells that separate the inside of the organ from the surrounding environment inside the body. These so-called epithelial cells form a tightly packed barrier and have a very characteristic organization. The apical surface faces the outside world, while the basal surface faces the inner tissues. These different interfaces are reflected in the organization of the cells themselves. The shape, composition, and role of the apical cell surface are distinct from those of the basal surface, and they also contain different proteins. In some epithelial cells, the apical surface specializes and forms protruding structures called microvilli. Thus, epithelial cells are said to be polarized along this apical­basal axis. Over the last 30 years, many labs have identified and studied which proteins help epithelial cells become and stay polarized. Previous biochemical experiments showed that these so-called polarity proteins interact with each other in many different ways. But it remains unclear whether some of these interactions are more important than others, and where exactly in the apical or basal membranes these interactions take place. Mangeol et al. used super-resolution microscopy to observe the polarity of proteins at the apical membranes of both human and mouse cells from the small intestine to answer these questions. They focused on areas called tight junctions, where the intestinal cells connect with each other to form the barrier between the outside and the inside. First, all the polarity proteins clustered together in various formations, they were not distributed uniformly. For example, one protein called PAR3 was at the level of the tight junctions, whereas other proteins were closer to the apical surface and the outside world. Only two pairs of proteins ­ PAR6 and aPKC, and PALS1 and PATJ ­ formed stable clusters with each other. This finding was unexpected because previous biochemical experiments had predicted multiple interactions. Third, the PALS1/PATJ complexes stayed at the bottom of the microvilli protrusions, whereas PAR6/aPKC were inside the protrusions. Taken together, these experiments reveal a detailed snapshot of how the polarity proteins themselves are organized at the apical surface of epithelial cells. Future work will be able to address how these protein complexes behave over time.


Assuntos
Células Epiteliais , Junções Íntimas , Humanos , Animais , Camundongos , Células CACO-2 , Epitélio , Microscopia
5.
Nat Commun ; 13(1): 3435, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35701478

RESUMO

Base Editors are emerging as an innovative technology to introduce point mutations in complex genomes. So far, the requirement of an NGG Protospacer Adjacent Motif (PAM) at a suitable position often limits the base editing possibility to model human pathological mutations in animals. Here we show that, using the CBE4max-SpRY variant recognizing nearly all PAM sequences, we could introduce point mutations for the first time in an animal model with high efficiency, thus drastically increasing the base editing possibilities. With this near PAM-less base editor we could simultaneously mutate several genes and we developed a co-selection method to identify the most edited embryos based on a simple visual screening. Finally, we apply our method to create a zebrafish model for melanoma predisposition based on the simultaneous base editing of multiple genes. Altogether, our results considerably expand the Base Editor application to introduce human disease-causing mutations in zebrafish.


Assuntos
Proteína 9 Associada à CRISPR , Edição de Genes , Animais , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Genoma/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
6.
Nat Commun ; 13(1): 1039, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210422

RESUMO

The contractile properties of adult myofibers are shaped by their Myosin heavy chain isoform content. Here, we identify by snATAC-seq a 42 kb super-enhancer at the locus regrouping the fast Myosin genes. By 4C-seq we show that active fast Myosin promoters interact with this super-enhancer by DNA looping, leading to the activation of a single promoter per nucleus. A rainbow mouse transgenic model of the locus including the super-enhancer recapitulates the endogenous spatio-temporal expression of adult fast Myosin genes. In situ deletion of the super-enhancer by CRISPR/Cas9 editing demonstrates its major role in the control of associated fast Myosin genes, and deletion of two fast Myosin genes at the locus reveals an active competition of the promoters for the shared super-enhancer. Last, by disrupting the organization of fast Myosin, we uncover positional heterogeneity within limb skeletal muscles that may underlie selective muscle susceptibility to damage in certain myopathies.


Assuntos
Fibras Musculares Esqueléticas , Miosinas , Animais , Camundongos , Camundongos Transgênicos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosinas/genética , Miosinas/metabolismo , Fenótipo
7.
Mol Ther ; 30(1): 145-163, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34418541

RESUMO

Sickle cell disease (SCD) is caused by a mutation in the ß-globin gene leading to polymerization of the sickle hemoglobin (HbS) and deformation of red blood cells. Autologous transplantation of hematopoietic stem/progenitor cells (HSPCs) genetically modified using lentiviral vectors (LVs) to express an anti-sickling ß-globin leads to some clinical benefit in SCD patients, but it requires high-level transgene expression (i.e., high vector copy number [VCN]) to counteract HbS polymerization. Here, we developed therapeutic approaches combining LV-based gene addition and CRISPR-Cas9 strategies aimed to either knock down the sickle ß-globin and increase the incorporation of an anti-sickling globin (AS3) in hemoglobin tetramers, or to induce the expression of anti-sickling fetal γ-globins. HSPCs from SCD patients were transduced with LVs expressing AS3 and a guide RNA either targeting the endogenous ß-globin gene or regions involved in fetal hemoglobin silencing. Transfection of transduced cells with Cas9 protein resulted in high editing efficiency, elevated levels of anti-sickling hemoglobins, and rescue of the SCD phenotype at a significantly lower VCN compared to the conventional LV-based approach. This versatile platform can improve the efficacy of current gene addition approaches by combining different therapeutic strategies, thus reducing the vector amount required to achieve a therapeutic VCN and the associated genotoxicity risk.


Assuntos
Anemia Falciforme , Edição de Genes , Anemia Falciforme/genética , Anemia Falciforme/terapia , Proteína 9 Associada à CRISPR/genética , Hemoglobina Fetal/genética , Edição de Genes/métodos , Humanos , Globinas beta/genética
8.
Hum Gene Ther ; 32(19-20): 1059-1075, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34494480

RESUMO

Recent advances in genome editing tools, especially novel developments in the clustered regularly interspaced short palindromic repeats associated to Cas9 nucleases (CRISPR/Cas9)-derived editing machinery, have revolutionized not only basic science but, importantly, also the gene therapy field. Their flexibility and ability to introduce precise modifications in the genome to disrupt or correct genes or insert expression cassettes in safe harbors in the genome underline their potential applications as a medicine of the future to cure many genetic diseases. In this review, we give an overview of the recent progress made by French researchers in the field of therapeutic genome editing, while putting their work in the general context of advances made in the field. We focus on recent hematopoietic stem cell gene editing strategies for blood diseases affecting the red blood cells or blood coagulation as well as lysosomal storage diseases. We report on a genome editing-based therapy for muscular dystrophy and the potency of T cell gene editing to increase anticancer activity of chimeric antigen receptor T cells to combat cancer. We will also discuss technical obstacles and side effects such as unwanted editing activity that need to be surmounted on the way toward a clinical implementation of genome editing. We propose here improvements developed today, including by French researchers to overcome the editing-related genotoxicity and improve editing precision by the use of novel recombinant nuclease-based systems such as nickases, base editors, and prime editors. Finally, a solution is proposed to resolve the cellular toxicity induced by the systems employed for gene editing machinery delivery.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Endonucleases/genética , Técnicas de Transferência de Genes , Terapia Genética
9.
Blood Adv ; 5(5): 1137-1153, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33635334

RESUMO

ß-thalassemias (ß-thal) are a group of blood disorders caused by mutations in the ß-globin gene (HBB) cluster. ß-globin associates with α-globin to form adult hemoglobin (HbA, α2ß2), the main oxygen-carrier in erythrocytes. When ß-globin chains are absent or limiting, free α-globins precipitate and damage cell membranes, causing hemolysis and ineffective erythropoiesis. Clinical data show that severity of ß-thal correlates with the number of inherited α-globin genes (HBA1 and HBA2), with α-globin gene deletions having a beneficial effect for patients. Here, we describe a novel strategy to treat ß-thal based on genome editing of the α-globin locus in human hematopoietic stem/progenitor cells (HSPCs). Using CRISPR/Cas9, we combined 2 therapeutic approaches: (1) α-globin downregulation, by deleting the HBA2 gene to recreate an α-thalassemia trait, and (2) ß-globin expression, by targeted integration of a ß-globin transgene downstream the HBA2 promoter. First, we optimized the CRISPR/Cas9 strategy and corrected the pathological phenotype in a cellular model of ß-thalassemia (human erythroid progenitor cell [HUDEP-2] ß0). Then, we edited healthy donor HSPCs and demonstrated that they maintained long-term repopulation capacity and multipotency in xenotransplanted mice. To assess the clinical potential of this approach, we next edited ß-thal HSPCs and achieved correction of α/ß globin imbalance in HSPC-derived erythroblasts. As a safer option for clinical translation, we performed editing in HSPCs using Cas9 nickase showing precise editing with no InDels. Overall, we described an innovative CRISPR/Cas9 approach to improve α/ß globin imbalance in thalassemic HSPCs, paving the way for novel therapeutic strategies for ß-thal.


Assuntos
Talassemia beta , Animais , Sistemas CRISPR-Cas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , alfa-Globinas/genética , Globinas beta/genética , Talassemia beta/genética , Talassemia beta/terapia
10.
Elife ; 102021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33576334

RESUMO

While zebrafish is emerging as a new model system to study human diseases, an efficient methodology to generate precise point mutations at high efficiency is still lacking. Here we show that base editors can generate C-to-T point mutations with high efficiencies without other unwanted on-target mutations. In addition, we established a new editor variant recognizing an NAA protospacer adjacent motif, expanding the base editing possibilities in zebrafish. Using these approaches, we first generated a base change in the ctnnb1 gene, mimicking oncogenic an mutation of the human gene known to result in constitutive activation of endogenous Wnt signaling. Additionally, we precisely targeted several cancer-associated genes including cbl. With this last target, we created a new zebrafish dwarfism model. Together our findings expand the potential of zebrafish as a model system allowing new approaches for the endogenous modulation of cell signaling pathways and the generation of precise models of human genetic disease-associated mutations.


Assuntos
Oncogenes , Mutação Puntual , Transdução de Sinais , Proteínas de Peixe-Zebra/genética , beta Catenina/genética , Animais , Modelos Animais de Doenças , Edição de Genes , Humanos , Mutação , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , beta Catenina/metabolismo
11.
Sci Adv ; 6(7)2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32917636

RESUMO

Sickle cell disease (SCD) is caused by a single amino acid change in the adult hemoglobin (Hb) ß chain that causes Hb polymerization and red blood cell (RBC) sickling. The co-inheritance of mutations causing fetal γ-globin production in adult life hereditary persistence of fetal Hb (HPFH) reduces the clinical severity of SCD. HPFH mutations in the HBG γ-globin promoters disrupt binding sites for the repressors BCL11A and LRF. We used CRISPR-Cas9 to mimic HPFH mutations in the HBG promoters by generating insertions and deletions, leading to disruption of known and putative repressor binding sites. Editing of the LRF-binding site in patient-derived hematopoietic stem/progenitor cells (HSPCs) resulted in γ-globin derepression and correction of the sickling phenotype. Xenotransplantation of HSPCs treated with gRNAs targeting the LRF-binding site showed a high editing efficiency in repopulating HSPCs. This study identifies the LRF-binding site as a potent target for genome-editing treatment of SCD.


Assuntos
Anemia Falciforme , Talassemia beta , Anemia Falciforme/genética , Anemia Falciforme/terapia , Sítios de Ligação , Sistemas CRISPR-Cas , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Edição de Genes/métodos , Humanos , Fenótipo , Globinas beta/genética , Globinas beta/metabolismo , Talassemia beta/genética , Talassemia beta/metabolismo , Talassemia beta/terapia , gama-Globinas/genética , gama-Globinas/metabolismo
12.
Nat Commun ; 11(1): 4146, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792546

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

13.
Nat Commun ; 11(1): 3778, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728076

RESUMO

Targeted genome editing has a great therapeutic potential to treat disorders that require protein replacement therapy. To develop a platform independent of specific patient mutations, therapeutic transgenes can be inserted in a safe and highly transcribed locus to maximize protein expression. Here, we describe an ex vivo editing approach to achieve efficient gene targeting in human hematopoietic stem/progenitor cells (HSPCs) and robust expression of clinically relevant proteins by the erythroid lineage. Using CRISPR-Cas9, we integrate different transgenes under the transcriptional control of the endogenous α-globin promoter, recapitulating its high and erythroid-specific expression. Erythroblasts derived from targeted HSPCs secrete different therapeutic proteins, which retain enzymatic activity and cross-correct patients' cells. Moreover, modified HSPCs maintain long-term repopulation and multilineage differentiation potential in transplanted mice. Overall, we establish a safe and versatile CRISPR-Cas9-based HSPC platform for different therapeutic applications, including hemophilia and inherited metabolic disorders.


Assuntos
Engenharia Celular/métodos , Edição de Genes , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Linhagem Celular , Feminino , Regulação da Expressão Gênica , Hemofilia A/terapia , Humanos , Doenças Metabólicas/terapia , Camundongos , Regiões Promotoras Genéticas/genética , Transplante Autólogo/métodos , Transplante Heterólogo , alfa-Globinas/genética , alfa-Globinas/metabolismo
14.
PLoS Genet ; 15(10): e1008355, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31584931

RESUMO

Deficiency in several of the classical human RAD51 paralogs [RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3] is associated with cancer predisposition and Fanconi anemia. To investigate their functions, isogenic disruption mutants for each were generated in non-transformed MCF10A mammary epithelial cells and in transformed U2OS and HEK293 cells. In U2OS and HEK293 cells, viable ablated clones were readily isolated for each RAD51 paralog; in contrast, with the exception of RAD51B, RAD51 paralogs are cell-essential in MCF10A cells. Underlining their importance for genomic stability, mutant cell lines display variable growth defects, impaired sister chromatid recombination, reduced levels of stable RAD51 nuclear foci, and hyper-sensitivity to mitomycin C and olaparib, with the weakest phenotypes observed in RAD51B-deficient cells. Altogether these observations underscore the contributions of RAD51 paralogs in diverse DNA repair processes, and demonstrate essential differences in different cell types. Finally, this study will provide useful reagents to analyze patient-derived mutations and to investigate mechanisms of chemotherapeutic resistance deployed by cancers.


Assuntos
Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Recombinação Homóloga/genética , Rad51 Recombinase/genética , Núcleo Celular/genética , Cromátides/genética , Dano ao DNA/genética , Genoma Humano/genética , Células HEK293 , Humanos , Mutação
15.
Eur J Pharmacol ; 854: 398-405, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31039344

RESUMO

Hemoglobinopathies, such as ß-thalassemia, and sickle cell disease (SCD) are caused by abnormal structure or reduced production of ß-chains and affect millions of people worldwide. Hereditary persistence of fetal hemoglobin (HPFH) is a condition which is naturally occurring and characterized by a considerable elevation of fetal hemoglobin (HbF) in adult red blood cells. Individuals with compound heterozygous ß-thalassemia or SCD and HPFH have milder clinical symptoms. So, HbF reactivation has long been sought as an approach to mitigate the clinical symptoms of ß-thalassemia and SCD. Using CRISPR-Cas9 genome-editing strategy, we deleted a 200bp genomic region within the human erythroid-specific BCL11A (B-cell lymphoma/leukemia 11A) enhancer in KU-812, KG-1, and K562 cell lines. In our study, deletion of 200bp of BCL11A erythroid enhancer including GATAA motif leads to strong induction of γ-hemoglobin expression in K562 cells, but not in KU-812 and KG-1 cells. Altogether, our findings highlight the therapeutic potential of CRISPR-Cas9 as a precision genome editing tool for treating ß-thalassemia. In addition, our data indicate that KU-812 and KG-1 cell lines are not good models for studying HbF reactivation through inactivation of BCL11A silencing pathway.


Assuntos
Sistemas CRISPR-Cas/genética , Proteínas de Transporte/genética , Hemoglobina Fetal/metabolismo , Deleção de Genes , Terapia Genética/métodos , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Talassemia beta/terapia , Sequência de Bases , Edição de Genes , Humanos , Células K562 , Proteínas Repressoras , Talassemia beta/genética , Talassemia beta/metabolismo , gama-Globinas/genética
16.
Nat Commun ; 10(1): 1288, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894545

RESUMO

The TFIIH subunit XPB is involved in combined Xeroderma Pigmentosum and Cockayne syndrome (XP-B/CS). Our analyses reveal that XPB interacts functionally with KAT2A, a histone acetyltransferase (HAT) that belongs to the hSAGA and hATAC complexes. XPB interacts with KAT2A-containing complexes on chromatin and an XP-B/CS mutation specifically elicits KAT2A-mediated large-scale chromatin decondensation. In XP-B/CS cells, the abnormal recruitment of TFIIH and KAT2A to chromatin causes inappropriate acetylation of histone H3K9, leading to aberrant formation of transcription initiation complexes on the promoters of several hundred genes and their subsequent overexpression. Significantly, this cascade of events is similarly sensitive to KAT2A HAT inhibition or to the rescue with wild-type XPB. In agreement, the XP-B/CS mutation increases KAT2A HAT activity in vitro. Our results unveil a tight connection between TFIIH and KAT2A that controls higher-order chromatin structure and gene expression and provide new insights into transcriptional misregulation in a cancer-prone DNA repair-deficient disorder.


Assuntos
Cromatina/química , Síndrome de Cockayne/genética , Histona Acetiltransferases/genética , Histonas/metabolismo , Subunidades Proteicas/genética , Fator de Transcrição TFIIH/genética , Xeroderma Pigmentoso/genética , Acetilação , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Cromatina/metabolismo , Síndrome de Cockayne/metabolismo , Síndrome de Cockayne/patologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Edição de Genes , Regulação da Expressão Gênica , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/metabolismo , Histonas/genética , Humanos , Modelos Biológicos , Osteoblastos/citologia , Osteoblastos/metabolismo , Cultura Primária de Células , Subunidades Proteicas/metabolismo , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Fator de Transcrição TFIIH/metabolismo , Iniciação da Transcrição Genética , Xeroderma Pigmentoso/metabolismo , Xeroderma Pigmentoso/patologia
17.
Animal Model Exp Med ; 2(4): 297-311, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31942562

RESUMO

BACKGROUND: Genetically engineered animals are essential for gaining a proper understanding of the disease mechanisms of cystic fibrosis (CF). The rat is a relevant laboratory model for CF because of its zootechnical capacity, size, and airway characteristics, including the presence of submucosal glands. METHODS: We describe the generation of a CF rat model (F508del) homozygous for the p.Phe508del mutation in the transmembrane conductance regulator (Cftr) gene. This model was compared to new Cftr -/- rats (CFTR KO). Target organs in CF were examined by histological staining of tissue sections and tooth enamel was quantified by micro-computed tomography. The activity of CFTR was evaluated by nasal potential difference (NPD) and short-circuit current measurements. The effect of VX-809 and VX-770 was analyzed on nasal epithelial primary cell cultures from F508del rats. RESULTS: Both newborn F508del and Knock out (KO) animals developed intestinal obstruction that could be partly compensated by special diet combined with an osmotic laxative. The two rat models exhibited CF phenotypic anomalies such as vas deferens agenesis and tooth enamel defects. Histology of the intestine, pancreas, liver, and lungs was normal. Absence of CFTR function in KO rats was confirmed ex vivo by short-circuit current measurements on colon mucosae and in vivo by NPD, whereas residual CFTR activity was observed in F508del rats. Exposure of F508del CFTR nasal primary cultures to a combination of VX-809 and VX-770 improved CFTR-mediated Cl- transport. CONCLUSIONS: The F508del rats reproduce the phenotypes observed in CFTR KO animals and represent a novel resource to advance the development of CF therapeutics.

18.
Sci Rep ; 8(1): 11734, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30082705

RESUMO

Targeted mutagenesis using CRISPR/Cas9 technology has been shown to be a powerful approach to examine gene function in diverse metazoan species. One common drawback is that mixed genotypes, and thus variable phenotypes, arise in the F0 generation because incorrect DNA repair produces different mutations amongst cells of the developing embryo. We report here an effective method for gene knockout (KO) in the hydrozoan Clytia hemisphaerica, by injection into the egg of Cas9/sgRNA ribonucleoprotein complex (RNP). Expected phenotypes were observed in the F0 generation when targeting endogenous GFP genes, which abolished fluorescence in embryos, or CheRfx123 (that codes for a conserved master transcriptional regulator for ciliogenesis) which caused sperm motility defects. When high concentrations of Cas9 RNP were used, the mutations in target genes at F0 polyp or jellyfish stages were not random but consisted predominantly of one or two specific deletions between pairs of short microhomologies flanking the cleavage site. Such microhomology-mediated (MM) deletion is most likely caused by microhomology-mediated end-joining (MMEJ), which may be favoured in early stage embryos. This finding makes it very easy to isolate uniform, largely non-mosaic mutants with predictable genotypes in the F0 generation in Clytia, allowing rapid and reliable phenotype assessment.


Assuntos
Sistemas CRISPR-Cas/genética , Ribonucleoproteínas/metabolismo , Animais , Feminino , Técnicas de Inativação de Genes/métodos , Hidrozoários/genética , Hidrozoários/metabolismo , Masculino , Mosaicismo , Ribonucleoproteínas/genética
19.
Transplantation ; 102(8): 1271-1278, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29688994

RESUMO

BACKGROUND: Immunodeficient mice are invaluable tools to analyze the long-term effects of potentially immunogenic molecules in the absence of adaptive immune responses. Nevertheless, there are models and experimental situations that would beneficiate of larger immunodeficient recipients. Rats are ideally suited to perform experiments in which larger size is needed and are still a small animal model suitable for rodent facilities. Additionally, rats reproduce certain human diseases better than mice, such as ankylosing spondylitis and Duchenne disease, and these disease models would greatly benefit from immunodeficient rats to test different immunogenic treatments. METHODS: We describe the generation of Il2rg-deficient rats and their crossing with previously described Rag1-deficient rats to generate double-mutant RRG animals. RESULTS: As compared with Rag1-deficient rats, Il2rg-deficient rats were more immunodeficient because they partially lacked not only T and B cells but also NK cells. RRG animals showed a more profound immunossuppressed phenotype because they displayed undetectable levels of T, B, and NK cells. Similarly, all immunoglobulin isotypes in sera were decreased in Rag1- or Il2rg-deficient rats and undetectable in Rats Rag1 and Il2rg (RRG) animals. Rag1- or Il2rg-deficient rats rejected allogeneic skin transplants and human tumors, whereas animals not only accepted allogeneic rat skin but also xenogeneic human tumors, skin, and hepatocytes. Immune humanization of RRG animals was unsuccessful. CONCLUSIONS: Thus, immunodeficient RRG animals are useful recipients for long-term studies in which immune responses could be an obstacle, including tissue humanization of different tissues.


Assuntos
Deleção de Genes , Proteínas de Homeodomínio/genética , Subunidade gama Comum de Receptores de Interleucina/genética , Animais , Animais Geneticamente Modificados , Cruzamentos Genéticos , Modelos Animais de Doenças , Éxons , Feminino , Genótipo , Hepatócitos/citologia , Humanos , Sistema Imunitário , Fígado/imunologia , Masculino , Mutação , Ratos , Ratos Sprague-Dawley , Transplante de Pele , Transplante Heterólogo , Transplantes
20.
Diabetes ; 66(4): 987-993, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28082457

RESUMO

Xenocell therapy from neonate or adult pig pancreatic islets is one of the most promising alternatives to allograft in type 1 diabetes for addressing organ shortage. In humans, however, natural and elicited antibodies specific for pig xenoantigens, α-(1,3)-galactose (GAL) and N-glycolylneuraminic acid (Neu5Gc), are likely to significantly contribute to xenoislet rejection. We obtained double-knockout (DKO) pigs lacking GAL and Neu5Gc. Because Neu5Gc-/- mice exhibit glycemic dysregulations and pancreatic ß-cell dysfunctions, we evaluated islet function and glucose metabolism regulation in DKO pigs. Isolation of islets from neonate piglets yielded identical islet equivalent quantities to quantities obtained from control wild-type pigs. In contrast to wild-type islets, DKO islets did not induce anti-Neu5Gc antibody when grafted in cytidine monophosphate-N-acetylneuraminic acid hydroxylase KO mice and exhibited in vitro normal insulin secretion stimulated by glucose and theophylline. Adult DKO pancreata showed no histological abnormalities, and immunostaining of insulin and glucagon was similar to that from wild-type pancreata. Blood glucose, insulin, C-peptide, the insulin-to-glucagon ratio, and HOMA-insulin resistance in fasted adult DKO pigs and blood glucose and C-peptide changes after intravenous glucose or insulin administration were similar to wild-type pigs. This first evaluation of glucose homeostasis in DKO pigs for two major xenoantigens paves the way to their use in (pre)clinical studies.


Assuntos
Galactose/genética , Glucose/farmacologia , Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ácidos Neuramínicos/metabolismo , Antagonistas de Receptores Purinérgicos P1/farmacologia , Teofilina/farmacologia , Animais , Antígenos Heterófilos , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Peptídeo C/efeitos dos fármacos , Peptídeo C/metabolismo , Diabetes Mellitus Tipo 1/cirurgia , Galactose/imunologia , Técnicas de Inativação de Genes , Glucagon/efeitos dos fármacos , Glucagon/metabolismo , Homeostase , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Transplante das Ilhotas Pancreáticas , Masculino , Ácidos Neuramínicos/imunologia , Pâncreas/metabolismo , Suínos , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA