Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Microbiol ; 76: 374-381, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30166163

RESUMO

The present work was performed to evaluate the potential of electron beam ionizing radiation for the inactivation of three psychrophilic spore forming bacteria (Bacillus mycoides, Bacillus weihenstephanensis and Psychrobacillus psychrodurans) isolated from ready-to-eat brown crab (Cancer pagurus). Inactivation curves for the three spores were performed in both types of crab meat, brown and white. Also the effect of pH and water activity (aw) on the lethal efficacy of ionizing radiation, for the three different psychrophilic spore forming bacteria, was evaluated. The effects of pH, aw and their possible interactions were assessed in citrate-phosphate buffers of different pH, ranging between 7 and 4, and aw, ranging from <0.99 to 0.80. A reduction of aw increased the spores resistance between >0.99 and 0.90, while an aw reduction from 0.90 to 0.80 had a minor impact on their resistance. In contrast to aw, the effect of pH showed a greater variability depending on the spore species. While pH did not affect the resistance of B. weihenstephanensis at any aw, B. mycoides showed slightly higher resistance at pH 5.5 at aw of 0.90 and 0.80. pH showed a significant effect on the resistance of P. psychrodurans. For the two types of crab meat, slightly differences were observed in 6D values. B. weihenstephanensis was the most resistant, requiring 7.3-7.6 kGy to inactivate 6 Log10-cycles of this spore forming bacterium, while for B. mycoides and P. psychrodurans 6.1-6.3 and 5.4-5.3 kGy respectively were necessary to reach the same inactivation level in crab meat. An agreement between spore resistance in crab meats and lab media, with similar characteristics in pH and aw, was also observed. The results obtained in this research demonstrated the potential for ionizing radiation to achieve an appropriate inactivation level of spores naturally present in brown crab with the application of doses lower than 10 kGy.


Assuntos
Bactérias/efeitos da radiação , Braquiúros/microbiologia , Irradiação de Alimentos/métodos , Carne/microbiologia , Frutos do Mar/microbiologia , Esporos Bacterianos/efeitos da radiação , Animais , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Radiação Ionizante , Frutos do Mar/análise , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/isolamento & purificação
2.
Ultrason Sonochem ; 48: 550-554, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30080584

RESUMO

The consumption of crustaceans is correlated with certain health risks, particularly due to several highly toxic elements they contain, including cadmium (Cd). Although Cd content in one sole crab generally exceeds the total weekly recommended intake of cadmium as established by EFSA (especially in brown meat), efficient modern strategies to reduce Cd content in crabs still have not yet been developed. The objective of this research was therefore to evaluate the potential use of ultrasound technology in combination with temperature (50°-80 °C) with the purpose of releasing Cd from brown crab (Cancer pagurus), thereby reducing the Cd content in its meat. Female crabs were immersed in a water bath at 50, 65, and 80 °C in presence or absence of ultrasound; Cd concentration in the water was monitored along time. At the end of the process, Cd content in brown and white crab meat was likewise quantified. Treatment temperature did not bear an influence on the release of Cd in absence of ultrasound, but proved to be an important variable when ultrasound assisted the process. Ultrasound increased Cd release rates 8.7-, 2.1- and 2.7-fold in conjunction with the treatments at 50, 65 and 80 °C, respectively. The maximum percentage of Cd extracted (22.8%) was observed at 50 °C for an ultrasound input power of 200 W. These results have demonstrated for the first time that the application of ultrasound during the crab-cooking process could serve as an effective physical procedure for reducing the Cd content of crabs, thereby improving the product's safety for consumers.


Assuntos
Braquiúros/metabolismo , Cádmio/isolamento & purificação , Temperatura Alta , Ondas Ultrassônicas , Poluentes Químicos da Água/isolamento & purificação , Animais , Cádmio/metabolismo , Poluentes Químicos da Água/metabolismo
3.
Ultrason Sonochem ; 40(Pt A): 497-504, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28946451

RESUMO

This study assesses the potential of incorporating ultrasound as a processing aid in the production of whole cooked brown crab (Cancer pagurus). The FDA recommended heat treatment to reduce Listeria monocytogenes by 6 log10 cycles in this product is a F707.5 of 2min. An equivalent F value was applied at 75°C in presence and absence of ultrasound in water alone or in water with 5% w/v NaCl added. Heat penetration, turbidity and conductivity of the cook water and also salt and moisture content of the crab meat (white and brown) were determined. Ultrasound assisted cooking allowed a reduction of the cooking time by up to 15% while still maintaining an F707.5 of 2min. Ultrasound also enhanced the rate and total amount of compounds released from the crab, which suggests that crabs cooked in the presence of ultrasound would be expected to be cleaner. Ultrasound also proved to be effective in reducing the salt content but hardly affected the final moisture content of the crab meat.


Assuntos
Braquiúros , Manipulação de Alimentos/métodos , Ondas Ultrassônicas , Animais , Qualidade dos Alimentos , Água/análise
4.
Int J Food Microbiol ; 223: 9-16, 2016 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-26874861

RESUMO

This research was performed to characterize the resistance of three different bacterial spore species isolated from pasteurized edible crab (Cancer pagurus) meat to heat treatments and to assess the potential of manosonication (MS) and manothermosonication (MTS) as an alternative for their inactivation. The spore-forming bacteria used in this study were Bacillus mycoides, Bacillus weihenstephanensis and Psychrobacillus psychrodurans. The thermal resistance of these three species was determined at different temperatures ranging from 80 to 110 °C and their resistance to ultrasound under pressure from 35 to 95 °C. Ginafit Excel tool was used to fit the Geeraerd's 'Log-linear + shoulder' and Bigelow & Easty's equations to the survival curves for heat and MS/MTS treatments. From the results obtained it can be concluded that the profile of the survival curves either for heat or for ultrasound treatments depended on the bacterial spore species. When shoulders were detected in the inactivation curves for heat they were also present in the curves for MS/MTS treatments, although the application of an ultrasonic field reduced the shoulder length. B. weihenstephanensis was found to be the most resistant species to heat, requiring 1.4 min to reduce 4log10 cycles at 107.5 °C (zT=7.1 °C) while B. mycoides was the most sensitive requiring 1.6 min at 95 °C (zT=9.1 °C). By contrast, B. mycoides was the most resistant to MS. The efficiency of the combination of ultrasonic waves under pressure with heat (MTS) for bacterial spore inactivation was directly correlated with the thermal resistance. Indeed, MTS showed a synergistic effect for the inactivation of the three spores. The highest percentage of synergism corresponded to the spore species with higher zT value (B. mycoides), but the highest temperature at which this synergism was detected corresponded to the most heat tolerant spore species (B. weihenstephanensis). This study revealed that MTS treatment is capable of inactivating spore-forming bacteria and that the inactivation efficiency of the combined treatment is correlated with the thermal resistance of the spore species.


Assuntos
Bacillaceae/fisiologia , Braquiúros/microbiologia , Microbiologia de Alimentos/métodos , Temperatura Alta , Viabilidade Microbiana , Pressão , Ultrassom , Animais , Esporos Bacterianos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA