Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Neurochem ; 168(7): 1237-1253, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38327008

RESUMO

The disruption of mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) plays a relevant role in Alzheimer's disease (AD). MAMs have been implicated in neuronal dysfunction and death since it is associated with impairment of functions regulated in this subcellular domain, including lipid synthesis and trafficking, mitochondria dysfunction, ER stress-induced unfolded protein response (UPR), apoptosis, and inflammation. Since MAMs play an important role in lipid metabolism, in this study we characterized and investigated the lipidome alterations at MAMs in comparison with other subcellular fractions, namely microsomes and mitochondria, using an in vitro model of AD, namely the mouse neuroblastoma cell line (N2A) over-expressing the APP familial Swedish mutation (APPswe) and the respective control (WT) cells. Phospholipids (PLs) and fatty acids (FAs) were isolated from the different subcellular fractions and analyzed by HILIC-LC-MS/MS and GC-MS, respectively. In this in vitro AD model, we observed a down-regulation in relative abundance of some phosphatidylcholine (PC), lysophosphatidylcholine (LPC), and lysophosphatidylethanolamine (LPE) species with PUFA and few PC with saturated and long-chain FA. We also found an up-regulation of CL, and antioxidant alkyl acyl PL. Moreover, multivariate analysis indicated that each organelle has a specific lipid profile adaptation in N2A APPswe cells. In the FAs profile, we found an up-regulation of C16:0 in all subcellular fractions, a decrease of C18:0 levels in total fraction (TF) and microsomes fraction, and a down-regulation of 9-C18:1 was also found in mitochondria fraction in the AD model. Together, these results suggest that the over-expression of the familial APP Swedish mutation affects lipid homeostasis in MAMs and other subcellular fractions and supports the important role of lipids in AD physiopathology.


Assuntos
Doença de Alzheimer , Lipidômica , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Animais , Camundongos , Lipidômica/métodos , Linhagem Celular Tumoral , Membranas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Fosfolipídeos/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Humanos , Metabolismo dos Lipídeos/fisiologia , Membranas Associadas à Mitocôndria
2.
Mar Drugs ; 21(12)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38132950

RESUMO

Microalgae are recognized as a relevant source of bioactive compounds. Among these bioactive products, lipids, mainly glycolipids, have been shown to present immunomodulatory properties with the potential to mitigate chronic inflammation. This study aimed to evaluate the anti-inflammatory effect of polar lipids isolated from Nannochloropsis oceanica and Chlorococcum amblystomatis. Three fractions enriched in (1) digalactosyldiacylglycerol (DGDG) and sulfoquinovosyldiacylglycerol (SQDG), (2) monogalactosyldiacylglycerol (MGDG), and (3) diacylglyceryl-trimethylhomoserine (DGTS) and phospholipids (PL) were obtained from the total lipid extracts (TE) of N. oceanica and C. amblystomatis, and their anti-inflammatory effect was assessed by analyzing their capacity to counteract nitric oxide (NO) production and transcription of pro-inflammatory genes Nos2, Ptgs2, Tnfa, and Il1b in lipopolysaccharide (LPS)-activated macrophages. For both microalgae, TE and Fractions 1 and 3 strongly inhibited NO production, although to different extents. A strong reduction in the LPS-induced transcription of Nos2, Ptgs2, Tnfa, and Il1b was observed for N. oceanica and C. amblystomatis lipids. The most active fractions were the DGTS-and-PL-enriched fraction from N. oceanica and the DGDG-and-SQDG-enriched fraction from C. amblystomatis. Our results reveal that microalgae lipids have strong anti-inflammatory capacity and may be explored as functional ingredients or nutraceuticals, offering a natural solution to tackle chronic inflammation-associated diseases.


Assuntos
Microalgas , Estramenópilas , Humanos , Lipopolissacarídeos/farmacologia , Ciclo-Oxigenase 2 , Macrófagos , Anti-Inflamatórios/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico
3.
Sci Rep ; 13(1): 22302, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102403

RESUMO

Considerable attention has been devoted to investigating the biological activity of microalgal extracts, highlighting their capacity to modulate cellular metabolism. This study aimed to assess the impact of Nannochloropsis oceanica lipid extract on the phospholipid profile of human keratinocytes subjected to UVB radiation. The outcomes revealed that treatment of keratinocytes with the lipid extract from microalgae led to a reduction in sphingomyelin (SM) levels, with a more pronounced effect observed in UVB-irradiated cells. Concomitantly, there was a significant upregulation of ceramides CER[NDS] and CER[NS], along with increased sphingomyelinase activity. Pathway analysis further confirmed that SM metabolism was the most significantly affected pathway in both non-irradiated and UVB-irradiated keratinocytes treated with the microalgal lipid extract. Additionally, the elevation in alkylacylPE (PEo) and diacylPE (PE) species content observed in UVB-irradiated keratinocytes following treatment with the microalgal extract suggested the potential induction of pro-survival mechanisms through autophagy in these cells. Conversely, a noteworthy reduction in LPC content in UVB-irradiated keratinocytes treated with the extract, indicated the anti-inflammatory properties of the lipid extract obtained from microalgae. However, to fully comprehend the observed alterations in the phospholipid profile of UVB-irradiated keratinocytes, further investigations are warranted to identify the specific fraction of compounds responsible for the activity of the Nannochloropsis oceanica extract.


Assuntos
Microalgas , Humanos , Lipidômica , Pele/efeitos da radiação , Queratinócitos/metabolismo , Fosfolipídeos/metabolismo , Raios Ultravioleta
4.
Int J Mol Sci ; 24(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37762626

RESUMO

Ultraviolet B (UVB) radiation induces oxidative stress in skin cells, generating reactive oxygen species (ROS) and perturbing enzyme-mediated metabolism. This disruption is evidenced with elevated concentrations of metabolites that play important roles in the modulation of redox homeostasis and inflammatory responses. Thus, this research sought to determine the impacts of the lipid extract derived from the Nannochloropsis oceanica microalgae on phospholipid metabolic processes in keratinocytes subjected to UVB exposure. UVB-irradiated keratinocytes were treated with the microalgae extract. Subsequently, analyses were performed on cell lysates to ascertain the levels of phospholipid/free fatty acids (GC-FID), lipid peroxidation byproducts (GC-MS), and endocannabinoids/eicosanoids (LC-MS), as well as to measure the enzymatic activities linked with phospholipid metabolism, receptor expression, and total antioxidant status (spectrophotometric methods). The extract from N. oceanica microalgae, by diminishing the activities of enzymes involved in the synthesis of endocannabinoids and eicosanoids (PLA2/COX1/2/LOX), augmented the concentrations of anti-inflammatory and antioxidant polyunsaturated fatty acids (PUFAs), namely DHA and EPA. These concentrations are typically diminished due to UVB irradiation. As a consequence, there was a marked reduction in the levels of pro-inflammatory arachidonic acid (AA) and associated pro-inflammatory eicosanoids and endocannabinoids, as well as the expression of CB1/TRPV1 receptors. The microalgal extract also mitigated the increase in lipid peroxidation byproducts, specifically MDA in non-irradiated samples and 10-F4t-NeuroP in both control and post-UVB exposure. These findings indicate that the lipid extract derived from N. oceanica, by mitigating the deleterious impacts of UVB radiation on keratinocyte phospholipids, assumed a pivotal role in reinstating intracellular metabolic equilibrium.


Assuntos
Antioxidantes , Microalgas , Antioxidantes/farmacologia , Endocanabinoides/metabolismo , Queratinócitos/metabolismo , Fosfolipídeos/metabolismo , Raios Ultravioleta/efeitos adversos
5.
Mar Drugs ; 21(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37103339

RESUMO

Marine environments occupy more than 70% of the earth's surface, integrating very diverse habitats with specific characteristics. This heterogeneity of environments is reflected in the biochemical composition of the organisms that inhabit them. Marine organisms are a source of bioactive compounds, being increasingly studied due to their health-beneficial properties, such as antioxidant, anti-inflammatory, antibacterial, antiviral, or anticancer. In the last decades, marine fungi have stood out for their potential to produce compounds with therapeutic properties. The objective of this study was to determine the fatty acid profile of isolates from the fungi Emericellopsis cladophorae and Zalerion maritima and assess the anti-inflammatory, antioxidant, and antibacterial potential of their lipid extracts. The analysis of the fatty acid profile, using GC-MS, showed that E. cladophorae and Z. maritima possess high contents of polyunsaturated fatty acids, 50% and 34%, respectively, including the omega-3 fatty acid 18:3 n-3. Emericellopsis cladophorae and Z. maritima lipid extracts showed anti-inflammatory activity expressed by the capacity of their COX-2 inhibition which was 92% and 88% of inhibition at 200 µg lipid mL-1, respectively. Emericellopsis cladophorae lipid extracts showed a high percentage of inhibition of COX -2 activity even at low concentrations of lipids (54% of inhibition using 20 µg lipid mL-1), while a dose-dependent behaviour was observed in Z. maritima. The antioxidant activity assays of total lipid extracts demonstrated that the lipid extract from E. cladophorae did not show antioxidant activity, while Z. maritima gave an IC20 value of 116.6 ± 6.2 µg mL-1 equivalent to 92.1 ± 4.8 µmol Trolox g-1 of lipid extract in the DPPH• assay, and 101.3 ± 14.4 µg mL-1 equivalent to 106.6 ± 14.8 µmol Trolox g-1 of lipid extract in the ABTS•+ assay. The lipid extract of both fungal species did not show antibacterial properties at the concentrations tested. This study is the first step in the biochemical characterization of these marine organisms and demonstrates the bioactive potential of lipid extracts from marine fungi for biotechnological applications.


Assuntos
Antibacterianos , Antioxidantes , Antioxidantes/química , Antibacterianos/farmacologia , Extratos Vegetais/farmacologia , Ácidos Graxos/análise , Fungos , Anti-Inflamatórios/farmacologia
6.
Life (Basel) ; 13(1)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36676180

RESUMO

Macro- and microalgae are currently recognized sources of lipids with great nutritional quality and attractive bioactivities for human health promotion and disease prevention. Due to the lipidomic diversity observed among algae species, giving rise to different nutritional and functional characteristics, the mixture of macro- and microalgae has the potential to present important synergistic effects resulting from the complementarity among algae. The aim of this work was to characterize for the first time the lipidome of a blend of macro- and microalgae and evaluate the antioxidant capacity of its lipid fraction. Fatty acids were profiled by GC-MS, the polar lipidome was identified by high resolution LC-MS, and ABTS+• and DPPH• assays were used to assess the antioxidant potential. The most abundant fatty acids were oleic (18:1 n-9), α-linolenic (18:3 n-3), and linoleic (18:2 n-6) acids. The lipid extract presented a beneficial n-6/n-3 ratio (0.98) and low values of atherogenic (0.41) and thrombogenic indices (0.27). The polar lipidome revealed 462 lipid species distributed by glycolipids, phospholipids, and betaine lipids, including some species bearing PUFA and a few with reported bioactivities. The lipid extract also showed antioxidant activity. Overall, the results are promising for the valorization of this blend for food, nutraceutical, and biotechnological applications.

7.
Metabolites ; 12(2)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35208171

RESUMO

The prevalence of inflammatory skin diseases continues to increase with a high incidence in children and adults. These diseases are triggered by environmental factors, such as UV radiation, certain chemical compounds, infectious agents, and in some cases, people with a genetic predisposition. The pathophysiology of inflammatory skin diseases such as psoriasis or atopic dermatitis, but also of skin cancers, is the result of the activation of inflammation-related metabolic pathways and the overproduction of pro-inflammatory cytokines observed in in vitro and in vivo studies. Inflammatory skin diseases are also associated with oxidative stress, overproduction of ROS, and impaired antioxidant defense, which affects the metabolism of immune cells and skin cells (keratinocytes and fibroblasts) in systemic and skin disorders. Lipids from algae have been scarcely applied to modulate skin diseases, but they are well known antioxidant and anti-inflammatory agents. They have shown scavenging activities and can modulate redox homeostasis enzymes. They can also downmodulate key inflammatory signaling pathways and transcription factors such as NF-κB, decreasing the expression of pro-inflammatory mediators. Thus, the exploitation of algae lipids as therapeutical agents for the treatment of inflammatory skin diseases is highly attractive, being critically reviewed in the present work.

8.
Int J Mol Sci ; 22(18)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34576003

RESUMO

Noncommunicable diseases (NCD) and age-associated diseases (AAD) are some of the gravest health concerns worldwide, accounting for up to 70% of total deaths globally. NCD and AAD, such as diabetes, obesity, cardiovascular disease, and cancer, are associated with low-grade chronic inflammation and poor dietary habits. Modulation of the inflammatory status through dietary components is a very appellative approach to fight these diseases and is supported by increasing evidence of natural and dietary components with strong anti-inflammatory activities. The consumption of bioactive lipids has a positive impact on preventing chronic inflammation and consequently NCD and AAD. Thus, new sources of bioactive lipids have been sought out. Microalgae are rich sources of bioactive lipids such as omega-6 and -3 polyunsaturated fatty acids (PUFA) and polar lipids with associated anti-inflammatory activity. PUFAs are enzymatically and non-enzymatically catalyzed to oxylipins and have a significant role in anti and pro-resolving inflammatory responses. Therefore, a large and rapidly growing body of research has been conducted in vivo and in vitro, investigating the potential anti-inflammatory activities of microalgae lipids. This review sought to summarize and critically analyze recent evidence of the anti-inflammatory potential of microalgae lipids and their possible use to prevent or mitigate chronic inflammation.


Assuntos
Envelhecimento/efeitos dos fármacos , Misturas Complexas/uso terapêutico , Ácidos Graxos Ômega-3/uso terapêutico , Ácidos Graxos Ômega-6/uso terapêutico , Microalgas/química , Doenças não Transmissíveis/tratamento farmacológico , Misturas Complexas/química , Ácidos Graxos Ômega-3/química , Ácidos Graxos Ômega-6/química , Humanos , Inflamação/tratamento farmacológico
9.
Mar Drugs ; 19(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201621

RESUMO

The demand for sustainable and environmentally friendly food sources and food ingredients is increasing, and microalgae are promoted as a sustainable source of essential and bioactive lipids, with high levels of omega-3 fatty acids (ω-3 FA), comparable to those of fish. However, most FA screening studies on algae are scattered or use different methodologies, preventing a true comparison of its content between microalgae. In this work, we used gas-chromatography mass-spectrometry (GC-MS) to characterize the FA profile of seven different commercial microalgae with biotechnological applications (Chlorella vulgaris, Chlorococcum amblystomatis, Scenedesmus obliquus, Tetraselmis chui, Phaeodactylum tricornutum, Spirulina sp., and Nannochloropsis oceanica). Screening for antioxidant activity was also performed to understand the relationship between FA profile and bioactivity. Microalgae exhibited specific FA profiles with a different composition, namely in the ω-3 FA profile, but with species of the same phylum showing similar tendencies. The different lipid extracts showed similar antioxidant activities, but with a low activity of the extracts of Nannochloropsis oceanica. Overall, this study provides a direct comparison of FA profiles between microalgae species, supporting the role of these species as alternative, sustainable, and healthy sources of essential lipids.


Assuntos
Antioxidantes/farmacologia , Ácidos Graxos Ômega-3/química , Microalgas/química , Animais , Organismos Aquáticos , Compostos de Bifenilo , Tecnologia de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Picratos
10.
Mar Drugs ; 20(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35049863

RESUMO

Microalgae are known as a producer of proteins and lipids, but also of valuable compounds for human health benefits (e.g., polyunsaturated fatty acids (PUFAs); minerals, vitamins, or other compounds). The overall objective of this research was to prospect novel products, such as nutraceuticals from microalgae, for application in human health, particularly for metabolic diseases. Chlorella vulgaris and Chlorococcum amblystomatis were grown autotrophically, and C. vulgaris was additionally grown heterotrophically. Microalgae biomass was extracted using organic solvents (dichloromethane, ethanol, ethanol with ultrasound-assisted extraction). Those extracts were evaluated for their bioactivities, toxicity, and metabolite profile. Some of the extracts reduced the neutral lipid content using the zebrafish larvae fat metabolism assay, reduced lipid accumulation in fatty-acid-overloaded HepG2 liver cells, or decreased the LPS-induced inflammation reaction in RAW264.7 macrophages. Toxicity was not observed in the MTT assay in vitro or by the appearance of lethality or malformations in zebrafish larvae in vivo. Differences in metabolite profiles of microalgae extracts obtained by UPLC-LC-MS/MS and GNPS analyses revealed unique compounds in the active extracts, whose majority did not have a match in mass spectrometry databases and could be potentially novel compounds. In conclusion, microalgae extracts demonstrated anti-obesity, anti-steatosis, and anti-inflammatory activities and could be valuable resources for developing future nutraceuticals. In particular, the ultrasound-assisted ethanolic extract of the heterotrophic C. vulgaris significantly enhanced the anti-obesity activity and demonstrated that the alteration of culture conditions is a valuable approach to increase the production of high-value compounds.


Assuntos
Anti-Inflamatórios/farmacologia , Fármacos Antiobesidade/farmacologia , Chlorella vulgaris , Microalgas , Animais , Anti-Inflamatórios/química , Fármacos Antiobesidade/química , Organismos Aquáticos , Células Hep G2/efeitos dos fármacos , Humanos , Larva/efeitos dos fármacos , Camundongos , Células RAW 264.7/efeitos dos fármacos , Peixe-Zebra
11.
Molecules ; 25(15)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751373

RESUMO

The immunomodulatory activity of flavonoids is increasingly appreciated. Macrophage phospholipids (PLs) play crucial roles in cell-mediated inflammatory responses. However, little is known on how these PLs are affected upon flavonoid treatment. In this work, we have used mass-spectrometry-based lipidomics to characterize the changes in the phospholipidome of proinflammatory human-macrophage-like cells (THP-1-derived and LPS+IFN-γ-stimulated) incubated with non-cytotoxic concentrations of three flavonoids: quercetin, naringin and naringenin. One hundred forty-seven PL species belonging to various classes were identified, and their relative abundances were determined. Each flavonoid displayed its own unique signature of induced effects. Quercetin produced the strongest impact, acting both on constitutive PLs (phosphatidylcholines, phosphatidylethanolamines and sphingomyelins) and on minor signaling lipids, such as phosphatidylinositol (PI) and phosphatidylserine (PS) species. Conversely, naringin hardly affected structural PLs, producing changes in signaling molecules that were opposite to those seen in quercetin-treated macrophages. In turn, albeit sharing some effects with quercetin, naringenin did not change PI and PS levels and interfered with a set of phosphatidylcholines distinct from those modulated by quercetin. These results demonstrate that flavonoids bioactivity involves profound and specific remodeling of macrophage phospholipidome, paving the way to future studies on the role of cellular phospholipids in flavonoid-mediated immunomodulatory effects.


Assuntos
Fatores Imunológicos/farmacologia , Mediadores da Inflamação/metabolismo , Lipidômica , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Fosfolipídeos/metabolismo , Biologia Computacional/métodos , Flavanonas/química , Flavanonas/farmacologia , Flavonoides/química , Flavonoides/farmacologia , Humanos , Fatores Imunológicos/química
12.
Sci Rep ; 9(1): 14906, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31624286

RESUMO

The ability of flavonoids to attenuate macrophage pro-inflammatory activity and to promote macrophage-mediated resolution of inflammation is still poorly understood at the biochemical level. In this study, we have employed NMR metabolomics to assess how therapeutically promising flavonoids (quercetin, naringenin and naringin) affect the metabolism of human macrophages, with a view to better understand their biological targets and activity. In vitro-cultured human macrophages were polarized to the pro-inflammatory M1 phenotype, through incubation with LPS + IFN-γ, and subsequently treated with each flavonoid. The metabolic signatures of pro-inflammatory polarization and of flavonoid incubations were then characterized and compared. The results showed that all flavonoids modulated the cells endometabolome with the strongest impact being observed for quercetin. Many of the flavonoid-induced metabolic variations were in the opposite sense to those elicited by pro-inflammatory stimulation. In particular, the metabolic processes proposed to reflect flavonoid-mediated immunomodulation of macrophages included the downregulation of glycolytic activity, observed for all flavonoids, anti-inflammatory reprogramming of the TCA cycle (mainly quercetin), increased antioxidant protection (quercetin), osmoregulation (naringin), and membrane modification (naringenin). This work revealed key metabolites and metabolic pathways involved in macrophage responses to quercetin, naringenin and naringin, providing novel insights into their immunomodulatory activity.


Assuntos
Anti-Inflamatórios/farmacologia , Flavonoides/farmacologia , Imunomodulação/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Regulação para Baixo/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Glicólise/imunologia , Humanos , Macrófagos/metabolismo , Espectroscopia de Ressonância Magnética , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/imunologia , Metabolômica , Células THP-1
13.
Acta amaz ; 43(3): 247-259, set. 2013. ilus, tab
Artigo em Português | LILACS-Express | LILACS, VETINDEX | ID: biblio-1455149

RESUMO

This study was carried out to characterize species composition and phytosociology of a native forest located at Caracaraí, Roraima, Brazil. All trees with breast diameter (DBH) above 10 cm in nine 1-ha-permanent plots (100 x 100 m each) were inventoried. We observed 4,724 individuals (525 trees per hectare) distributed in 42 families, 111 genera and 165 species. The families with greater number of individuals were Fabaceae (1883), Lecythidaceae (609) and Sapotaceae (434), comprising 52% of the total. The higher densities of individuals were observed in the pioneer (219 trees ha-1), followed by secondary (193 trees ha-1) and climax species (113 trees ha-1). However, species of secondary group had the highest species richness (95), followed by the climax (44) and the pioneer (26). The Shannon diversity index (H' = 3.27) and the value of Pielou equability (J = 0.64) were lower than those obtained in other floristic inventories in the Amazon, because of the high occurrence of Pentaclethra macroloba. The importance values (VI) were higher for Pentaclethra macroloba (52.1), Eschweilera bracteosa (23.7) and Pouteria caimito (8.1). The importance values of these three species alone accounted for 28% of the total VI across species. Most of the individuals (71.3% = 374 trees ha-1) were recorded in the middle stratum (12.4 m height 26.5 m) of forest. The forest community can be considered well-structured, mature and diverse, and so it is in good state of conservation.


O presente estudo teve como objetivo caracterizar a composição florística e fitossociológica de uma floresta nativa no município de Caracaraí, Roraima, Brasil. Foram inventariadas todas as árvores com DAP > 10 cm em 9 parcelas permanentes de 100 x 100 m (1 ha cada). Foram observados 4.724 indivíduos (525ind.ha-1), distribuídos em 42 famílias botânicas, 111 gêneros e 165 espécies. As famílias com maior número de indivíduos foram Fabaceae (1.883), Lecythidaceae (609) e Sapotaceae (434), perfazendo 52% do total de indivíduos amostrados. O grupo composto por espécies pioneiras apresentou maior número de indivíduos (219ind.ha-1), seguido das secundárias (193ind.ha-1) e climácicas (113ind.ha-1). No entanto, as secundárias obtiveram maior número de espécies (95), em detrimento de climácicas (44) e pioneiras (26). O índice de diversidade de Shannon (H' = 3,27) e o valor de equabilidade de Pielou (J = 0,64) foram inferiores aos obtidos em outros inventários florísticos na Amazônia Legal, contribuindo para isso o tamanho populacional de Pentaclethra macroloba. As espécies Pentaclethra macroloba (52,1), Eschweilera bracteosa (23,7) e Pouteria caimito (8,1) apresentaram os maiores valores de importância, perfazendo 28% do VI total. A maior parte dos indivíduos amostrados (71,3% = 374ind.ha-1) foram registrados no estrato médio (12,4 m altura 26,5 m) da floresta. A comunidade florestal pode ser considerada bem estruturada, madura e diversa, portanto em bom estado de conservação.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA