Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
G3 (Bethesda) ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365162

RESUMO

The Mexican fruit fly, Anastrepha ludens, is a polyphagous true fruit fly (Diptera: Tephritidae) considered one of the most serious insect pests in Central and North America to various economically relevant fruits. Despite its agricultural relevance, a high-quality genome assembly has not been reported. Here, we described the generation of a chromosome-level genome for the A. ludens using a combination of PacBio high fidelity long-reads and chromatin conformation capture sequencing data. The final assembly consisted of 140 scaffolds (821 Mb, N50 = 131 Mb), containing 99.27% complete conserved orthologs (BUSCO) for Diptera. We identified the sex chromosomes using three strategies: 1) visual inspection of Hi-C contact map and coverage analysis using the HiFi reads, 2) synteny with Drosophila melanogaster, and 3) the difference in the average read depth of autosomal versus sex chromosomal scaffolds. The X chromosome was found in one major scaffold (100 Mb) and eight smaller contigs (1.8 Mb), and the Y chromosome was recovered in one large scaffold (6.1 Mb) and 35 smaller contigs (4.3 Mb). Sex chromosomes and autosomes showed considerable differences of transposable elements and gene content. Moreover, evolutionary rates of orthologs of A. ludens and Anastrepha obliqua revealed a faster evolution of X-linked, compared to autosome-linked, genes, consistent with the faster-X effect, leading us to new insights on the evolution of sex chromosomes in this diverse group of flies. This genome assembly provides a valuable resource for future evolutionary, genetic, and genomic translational research supporting the management of this important agricultural pest.

2.
Evol Appl ; 16(9): 1598-1618, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37752958

RESUMO

Insect pests cause tremendous impact to agriculture worldwide. Species identification is crucial for implementing appropriate measures of pest control but can be challenging in closely related species. True fruit flies of the genus Anastrepha Schiner (Diptera: Tephritidae) include some of the most serious agricultural pests in the Americas, with the Anastrepha fraterculus (Wiedemann) complex being one of the most important due to its extreme polyphagy and wide distribution across most of the New World tropics and subtropics. The eight morphotypes described for this complex as well as other closely related species are classified in the fraterculus species group, whose evolutionary relationships are unresolved due to incomplete lineage sorting and introgression. We performed multifaceted phylogenomic approaches using thousands of genes to unravel the evolutionary relationships within the A. fraterculus complex to provide a baseline for molecular diagnosis of these pests. We used a methodology that accommodates variable sources of data (transcriptome, genome, and whole-genome shotgun sequencing) and developed a tool to align and filter orthologs, generating reliable datasets for phylogenetic studies. We inferred 3031 gene trees that displayed high levels of discordance. Nevertheless, the topologies of the inferred coalescent species trees were consistent across methods and datasets, except for one lineage in the A. fraterculus complex. Furthermore, network analysis indicated introgression across lineages in the fraterculus group. We present a robust phylogeny of the group that provides insights into the intricate patterns of evolution of the A. fraterculus complex supporting the hypothesis that this complex is an assemblage of closely related cryptic lineages that have evolved under interspecific gene flow. Despite this complex evolutionary scenario, our subsampling analysis revealed that a set of as few as 80 loci has a similar phylogenetic resolution as the genome-scale dataset, offering a foundation to develop more efficient diagnostic tools in this species group.

3.
Rev. peru. biol. (Impr.) ; 27(2): 139-148, abr.-jun 2020. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1144944

RESUMO

Resumen En la Amazonia Peruana los caracoles dulceacuícolas de la familia Ampullariidae son conocidos como churos y originalmente han sido descritas para Perú alrededor de 20 especies. Aunque son muy usadas para alimentación, medicina tradicional y objeto de muchos estudios para su cultivo e industrialización, solamente es mencionada en la literatura la especie Pomacea maculata. Se llevó a cabo la identificación molecular sobre la base del marcador mitocondrial COI, de individuos de churos negros (Pomacea) comercializados en los mercados de Iquitos, así como los usados en platos a la carta en la ciudad de Lima, contrastados con otros individuos de procedencia de su hábitat natural. Se encontró que estos especímenes expendidos corresponden a la especie Pomacea nobilis (Reeve, 1856). El análisis filogenético molecular mostró que P. nobilis es especie hermana de P. guyanensis, en el grupo de P. glauca, distantemente relacionada de P. maculata. Las distancias no corregidas encontradas entre ellas, para el marcador mitocondrial COI, fueron de 11.33% a 13.17%, mientras que con P. maculata fueron de 13.67% a 15.33%. Estos resultados demostraron la eficacia del código de barras de ADN para la identificación y autenticación de la especie, lo que le da un valor agregado para su eventual comercio de exportación.


Abstract In the Peruvian Amazon, freshwater snails of the Ampullariidae family are known as churos, and around 20 species have originally been described for Peru. Although they are widely used for food, traditional medicine and the object of many studies for their cultivation and industrialization, only the species Pomacea maculata is mentioned in the literature. Molecular identification was carried out based on the mitochondrial marker COI of individuals of "churo negro" apple snails (Pomacea) commercialized in the markets of Iquitos, as well as those used in restaurant dishes in the city of Lima, and contrasted with specimens from their natural habitat. It was found that these specimens, correspond to the species Pomacea nobilis (Reeve, 1856). The molecular phylogenetic analysis showed P. nobilis as the sister species of P. guyanensis, in the P. glauca group, distantly related to P. maculata. The uncorrected distances found between them, for the mitochondrial marker COI, were from 11.33% to 13.17%, while with P. maculate were from 13.67% to 15.33%. These results demonstrated the effectiveness of the DNA barcode for the identification and authentication of the species, which gives it added value for its eventual export trade.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA