Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 106(6): 748-763, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32442411

RESUMO

The identification of causal variants and mechanisms underlying complex disease traits in humans is important for the progress of human disease genetics; this requires finding strategies to detect functional regulatory variants in disease-relevant cell types. To achieve this, we collected genetic and transcriptomic data from the aortic endothelial cells of up to 157 donors and four epigenomic phenotypes in up to 44 human donors representing individuals of both sexes and three major ancestries. We found thousands of expression quantitative trait loci (eQTLs) at all ranges of effect sizes not detected by the Gene-Tissue Expression Project (GTEx) in human tissues, showing that novel biological relationships unique to endothelial cells (ECs) are enriched in this dataset. Epigenetic profiling enabled discovery of over 3,000 regulatory elements whose activity is modulated by genetic variants that most frequently mutated ETS, AP-1, and NF-kB binding motifs, implicating these motifs as governors of EC regulation. Using CRISPR interference (CRISPRi), allele-specific reporter assays, and chromatin conformation capture, we validated candidate enhancer variants located up to 750 kb from their target genes, VEGFC, FGD6, and KIF26B. Regulatory SNPs identified were enriched in coronary artery disease (CAD) loci, and this result has specific implications for PECAM-1, FES, and AXL. We also found significant roles for EC regulatory variants in modifying the traits pulse pressure, blood protein levels, and monocyte count. Lastly, we present two unlinked SNPs in the promoter of MFAP2 that exhibit pleiotropic effects on human disease traits. Together, this supports the possibility that genetic predisposition for complex disease is manifested through the endothelium.


Assuntos
Doença/genética , Células Endoteliais/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica/genética , Variação Genética/genética , Alelos , Epigênese Genética/genética , Feminino , Humanos , Cinesinas/genética , Masculino , Mutação , NF-kappa B/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Proteína Proto-Oncogênica c-ets-1/metabolismo , Locos de Características Quantitativas/genética , Fator de Transcrição AP-1/metabolismo , Regulador Transcricional ERG/metabolismo , Fator C de Crescimento do Endotélio Vascular/genética
2.
J Bacteriol ; 198(6): 994-1004, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26787762

RESUMO

UNLABELLED: Myxobacteria form complex social communities that elicit multicellular behaviors. One such behavior is kin recognition, in which cells identify siblings via their polymorphic TraA cell surface receptor, to transiently fuse outer membranes and exchange their contents. In addition, outer membrane exchange (OME) regulates behaviors, such as inhibition of wild-type Myxococcus xanthus (DK1622) from swarming. Here we monitored the fate of motile cells and surprisingly found they were killed by nonmotile siblings. The kill phenotype required OME (i.e., was TraA dependent). The genetic basis of killing was traced to ancestral strains used to construct DK1622. Specifically, the kill phenotype mapped to a large "polyploid prophage," Mx alpha. Sensitive strains contained a 200-kb deletion that removed two of three Mx alpha units. To explain these results, we suggest that Mx alpha expresses a toxin-antitoxin cassette that uses the OME machinery of M. xanthus to transfer a toxin that makes the population "addicted" to Mx alpha. Thus, siblings that lost Mx alpha units (no immunity) are killed by cells that harbor the element. To test this, an Mx alpha-harboring laboratory strain was engineered (by traA allele swap) to recognize a closely related species, Myxococcus fulvus. As a result, M. fulvus, which lacks Mx alpha, was killed. These TraA-mediated antagonisms provide an explanation for how kin recognition specificity might have evolved in myxobacteria. That is, recognition specificity is determined by polymorphisms in traA, which we hypothesize were selected for because OME with non-kin leads to lethal outcomes. IMPORTANCE: The transition from single cell to multicellular life is considered a major evolutionary event. Myxobacteria have successfully made this transition. For example, in response to starvation, individual cells aggregate into multicellular fruiting bodies wherein cells differentiate into spores. To build fruits, cells need to recognize their siblings, and in part, this is mediated by the TraA cell surface receptor. Surprisingly, we report that TraA recognition can also involve sibling killing. We show that killing originates from a prophage-like element that has apparently hijacked the TraA system to deliver a toxin to kin. We hypothesize that this killing system has imposed selective pressures on kin recognition, which in turn has resulted in TraA polymorphisms and hence many different recognition groups.


Assuntos
Antibiose , Dosagem de Genes , Myxococcus xanthus/fisiologia , Myxococcus xanthus/virologia , Prófagos/genética , Receptores de Superfície Celular/metabolismo , Toxinas Bacterianas/metabolismo , Membrana Celular/metabolismo , Myxococcus xanthus/genética , Transporte Proteico , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA