Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 84(8): 1221-1236, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38330147

RESUMO

Pancreatic cancer is more prevalent in older individuals and often carries a poorer prognosis for them. The relationship between the microenvironment and pancreatic cancer is multifactorial, and age-related changes in nonmalignant cells in the tumor microenvironment may play a key role in promoting cancer aggressiveness. Because fibroblasts have profound impacts on pancreatic cancer progression, we investigated whether age-related changes in pancreatic fibroblasts influence cancer growth and metastasis. Proteomics analysis revealed that aged fibroblasts secrete different factors than young fibroblasts, including increased growth/differentiation factor 15 (GDF-15). Treating young mice with GDF-15 enhanced tumor growth, whereas aged GDF-15 knockout mice showed reduced tumor growth. GDF-15 activated AKT, rendering tumors sensitive to AKT inhibition in an aged but not young microenvironment. These data provide evidence for how aging alters pancreatic fibroblasts and promotes tumor progression, providing potential therapeutic targets and avenues for studying pancreatic cancer while accounting for the effects of aging. SIGNIFICANCE: Aged pancreatic fibroblasts secrete GDF-15 and activate AKT signaling to promote pancreatic cancer growth, highlighting the critical role of aging-mediated changes in the pancreatic cancer microenvironment in driving tumor progression. See related commentary by Isaacson et al., p. 1185.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Pancreáticas , Animais , Camundongos , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Neoplasias Pancreáticas/patologia , Pâncreas/patologia , Fibroblastos/patologia , Microambiente Tumoral , Linhagem Celular Tumoral , Fibroblastos Associados a Câncer/patologia
2.
J Intensive Care Med ; 38(2): 137-150, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35861966

RESUMO

Catatonia is a clinical syndrome characterized by psychomotor, neurological and behavioral changes. The clinical picture of catatonia ranges from akinetic stupor to severe motoric excitement. Catatonia can occur in the setting of a primary psychiatric condition such as bipolar disorder or secondary to a general medical illness like autoimmune encephalitis. Importantly, it can co-occur with delirium or coma. Malignant catatonia describes catatonia that presents with clinically significant autonomic abnormalities including change in temperature, blood pressure, heart rate, and respiratory rate. It is a life-threatening form of acute brain dysfunction that has several motoric manifestations and occurs secondary to a primary psychiatric condition or a medical cause. Many of the established predisposing and precipitating factors for catatonia such as exposure to neuroleptic medications or withdrawal states are common in the setting of critical illness. Catatonia typically improves with benzodiazepines and treatment of its underlying psychiatric or medical conditions, with electroconvulsive therapy reserved for catatonia refractory to benzodiazepines or for malignant catatonia. However, some forms of catatonia, such as catatonia secondary to a general medical condition or catatonia comorbid with delirium, may be less responsive to traditional treatments. Prompt recognition and treatment of catatonia are crucial because malignant catatonia may be fatal without treatment. Given the high morbidity and mortality associated with malignant catatonia, intensivists should familiarize themselves with this important and under-recognized condition.


Assuntos
Catatonia , Humanos , Catatonia/diagnóstico , Catatonia/etiologia , Catatonia/terapia
3.
Biology (Basel) ; 11(8)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35892965

RESUMO

Cellular senescence, one of the hallmarks of aging, refers to permanent cell cycle arrest and is accelerated during the aging process. Black ginseng (BG), prepared by a repeated steaming and drying process nine times from fresh ginseng (Panax ginseng C.A. Meyer), is garnering attention for herbal medicine due to its physiological benefits against reactive oxygen species (ROS), inflammation, and oncogenesis, which are common cues to induce aging. However, which key nodules in the cellular senescence process are regulated by BG supplementation has not been elucidated yet. In this study, we investigated the effects of BG on cellular senescence using in vitro and aged mouse models. BG-treated primary mouse embryonic fibroblasts (MEFs) in which senescence was triggered by ionizing radiation (IR) expressed less senescence-associated ß-galactosidase (SA-ß-gal)-positive stained cells. In our aged mice (18 months old) study, BG supplementation (300 mg/kg) for 4 weeks altered hepatic genes involved in the aging process. Furthermore, we found BG supplementation downregulated age-related inflammatory genes, especially in the complement system. Based on this observation, we demonstrated that BG supplementation led to less activation of the canonical senescence pathway, p53-dependent p21 and p16, in multiple metabolic organs such as liver, skeletal muscle and white adipose tissue. Thus, we suggest that BG is a potential senolytic candidate that retards cellular senescence.

4.
Heart Vessels ; 37(2): 347-358, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34727208

RESUMO

Calcific aortic valve disease (CAVD) is the most common heart valve disease requiring intervention. Most research on CAVD has focused on inflammation, ossification, and cellular phenotype transformation. To gain a broader picture into the wide range of cellular and molecular mechanisms involved in this disease, we compared the total protein profiles between calcified and non-calcified areas from 5 human valves resected during surgery. The 1413 positively identified proteins were filtered down to 248 proteins present in both calcified and non-calcified segments of at least 3 of the 5 valves, which were then analyzed using Ingenuity Pathway Analysis. Concurrently, the top 40 differentially abundant proteins were grouped according to their biological functions and shown in interactive networks. Finally, the abundance of selected osteogenic proteins (osteopontin, osteonectin, osteocalcin, osteoprotegerin, and RANK) was quantified using ELISA and/or immunohistochemistry. The top pathways identified were complement system, acute phase response signaling, metabolism, LXR/RXR and FXR/RXR activation, actin cytoskeleton, mineral binding, nucleic acid interaction, structural extracellular matrix (ECM), and angiogenesis. There was a greater abundance of osteopontin, osteonectin, osteocalcin, osteoprotegerin, and RANK in the calcified regions than the non-calcified ones. The osteogenic proteins also formed key connections between the biological signaling pathways in the network model. In conclusion, this proteomic analysis demonstrated the involvement of multiple signaling pathways in CAVD. The interconnectedness of these pathways provides new insights for the treatment of this disease.


Assuntos
Estenose da Valva Aórtica , Calcinose , Valva Aórtica/metabolismo , Valva Aórtica/cirurgia , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/cirurgia , Calcinose/metabolismo , Humanos , Osteogênese/fisiologia , Proteoma/metabolismo , Proteômica
5.
Diabetes ; 70(12): 2947-2956, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34649926

RESUMO

Human insulin (INS) gene diverged from the ancestral genes of invertebrate and mammalian species millions of years ago. We previously found that mouse insulin gene (Ins2) isoforms are expressed in brain choroid plexus (ChP) epithelium cells, where insulin secretion is regulated by serotonin and not by glucose. We further compared human INS isoform expression in postmortem ChP and islets of Langerhans. We uncovered novel INS upstream open reading frame isoforms and their protein products. In addition, we found a novel alternatively spliced isoform that translates to a 74-amino acid (AA) proinsulin containing a shorter 19-AA C-peptide sequence, herein designated Cα-peptide. The middle portion of the conventional C-peptide contains ß-sheet (GQVEL) and hairpin (GGGPG) motifs that are not present in Cα-peptide. Islet amyloid polypeptide (IAPP) is not expressed in ChP, and its amyloid formation was inhibited in vitro more efficiently by Cα-peptide than by C-peptide. Of clinical relevance, the ratio of the 74-AA proinsulin to proconvertase-processed Cα-peptide was significantly increased in islets from type 2 diabetes mellitus autopsy donors. Intriguingly, 100 years after the discovery of insulin, we found that INS isoforms are present in ChP from insulin-deficient autopsy donors.


Assuntos
Peptídeo C/metabolismo , Plexo Corióideo/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Adulto , Sequência de Aminoácidos , Amiloide/análise , Amiloide/química , Amiloide/metabolismo , Animais , Autopsia , Peptídeo C/análise , Peptídeo C/química , Plexo Corióideo/química , Plexo Corióideo/patologia , Humanos , Insulina/análise , Insulina/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/análise , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/química , Ilhotas Pancreáticas/patologia , Camundongos , Proinsulina/análise , Proinsulina/química , Proinsulina/metabolismo , Isoformas de Proteínas/análise , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
6.
Acta Biomater ; 127: 159-168, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33831572

RESUMO

Mitral valve disease is a major cause of cardiovascular morbidity throughout the world. Many different mitral valve pathologies feature fibrotic remodeling, often accompanied by an inflammatory state. Mitral valve fibrosis is mediated by valvular interstitial cells (VICs), which reside in the valve leaflets and often differentiate into myofibroblast-like cells during disease conditions. In this study, we investigated the effects of tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1ß) on mitral VICs, since these pro-inflammatory cytokines have been shown to exert pleiotropic effects on various cell types in other fibrotic disorders. Using biomimetic three-dimensional culture systems, we demonstrated that TNF-α and IL-1ß suppress myofibroblast differentiation in mitral VICs, as evidenced by gene and protein expression of alpha smooth muscle actin and smooth muscle 22 alpha. Addition of TNF-α and IL-1ß also inhibited mitral VIC-mediated contraction of collagen gels. Furthermore, inhibition of NF-κB, which is downstream of TNF-α and IL-1ß, reversed these effects. These results reveal targetable pathways for potential development of pharmaceutical treatments for alleviating fibrosis during mitral valve disease. STATEMENT OF SIGNIFICANCE: Mitral valve disease is a common cardiovascular condition that is often accompanied by fibrotic tissue remodeling. Valvular interstitial cells (VICs), the fibroblast-like cells that reside in heart valve leaflets, are thought to drive fibrosis during valve disease by differentiating into activated myofibroblasts. However, the signaling pathways that regulate this process in the mitral valve are not fully understood. In the present study, we cultured mitral VICs in collagen and poly(ethylene glycol) scaffolds designed to mimic the heart valve microenvironment and treated the cell-seeded scaffolds with cytokines. Using these 3D culture models, we found that the pro-inflammatory cytokines TNF-α and IL-1ß downregulate myofibroblast and fibrosis markers in mitral VICs via the canonical NF-κB signaling pathway.


Assuntos
Estenose da Valva Aórtica , Calcinose , Valva Aórtica , Células Cultivadas , Humanos , Interleucina-1beta , Valva Mitral , Miofibroblastos , NF-kappa B , Transdução de Sinais , Fator de Necrose Tumoral alfa
7.
Cell Death Dis ; 11(12): 1044, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33298885

RESUMO

Cannabinoid 1 receptor (CB1R) expression is upregulated in the liver with viral hepatitis, cirrhosis, and both alcoholic and non-alcoholic fatty liver disease (FLD), whereas its expression is muted under usual physiological conditions. Inhibiting CB1R has been shown to be beneficial in preserving hepatic function in FLD but it is unclear if inhibiting CB1R during an inflammatory response to an acute hepatic injury, such as toxin-induced injury, would also be beneficial. We found that intrinsic CB1R in hepatocytes regulated liver inflammation-related gene transcription. We tested if nullification of hepatocyte-specific CB1R (hCNR1-/-) in mice protects against concanavalin A (Con A)-induced liver injury. We looked for evidence of liver damage and markers of inflammation in response to Con A by measuring liver enzyme levels and proinflammatory cytokines (e.g., TNF-α, IL-1ß, IL-6, IL-17) in serum collected from hCNR1-/- and control mice. We observed a shift to the right in the dose-response curve for liver injury and inflammation in hCNR1-/- mice. We also found less inflammatory cell infiltration and focal necrosis in livers of hCNR1-/- mice compared to controls, resulting from downregulated apoptotic markers. This anti-apoptotic mechanism results from increased activation of nuclear factor kappa B (NF-κB), especially cAMP-dependent cannabinoid signaling and membrane-bound TNF-α, via downregulated TNF-α receptor 2 (TNFR2) transcription levels. Collectively, these findings provide insight into involvement of CB1R in the pathogenesis of acute liver injury.


Assuntos
Concanavalina A/toxicidade , Hepatócitos/metabolismo , Fígado/metabolismo , Fígado/patologia , NF-kappa B/metabolismo , Receptor CB1 de Canabinoide/deficiência , Transdução de Sinais , Animais , Apoptose/efeitos dos fármacos , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Hepatócitos/efeitos dos fármacos , Inflamação/patologia , Fígado/efeitos dos fármacos , Masculino , Camundongos , Modelos Biológicos , Ligação Proteica , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
8.
Am J Physiol Lung Cell Mol Physiol ; 318(1): L112-L124, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31617730

RESUMO

Asthma is defined as chronic inflammation of the airways and is characterized by airway remodeling, hyperresponsiveness, and acute bronchoconstriction of airway smooth muscle (ASM) cells. Clinical findings suggest a higher incidence and severity of asthma in adult women, indicating a concrete role of sex steroids in modulating the airway tone. Estrogen, a major female sex steroid mediates its role through estrogen receptors (ER) ERα and ERß, which are shown to be expressed in human ASM, and their expression is upregulated in lung inflammation and asthma. Previous studies suggested rapid, nongenomic signaling of estrogen via ERs reduces intracellular calcium ([Ca2+]i), thereby promoting relaxation of ASM. However, long-term ER activation on [Ca2+]i regulation in human ASM during inflammation or in asthma is still not known. In Fura-2-loaded nonasthmatic and asthmatic human ASM cells, we found that prolonged (24 h) exposure to ERα agonist (PPT) increased [Ca2+]i response to histamine, whereas ERß activation (WAY) led to decreased [Ca2+] compared with vehicle. This was further confirmed by ER overexpression and knockdown studies using various bronchoconstrictor agents. Interestingly, ERß activation was more effective than 17ß-estradiol in reducing [Ca2+]i responses in the presence of TNF-α or IL-13, while no observable changes were noticed with PPT in the presence of either cytokine. The [Ca2+]i-reducing effects of ERß were mediated partially via L-type calcium channel inhibition and increased Ca2+ sequestration by sarcoplasmic reticulum. Overall, these data highlight the differential signaling of ERα and ERß in ASM during inflammation. Specific ERß activation reduces [Ca2+]i in the inflamed ASM cells and is likely to play a crucial role in regulating ASM contractility, thereby relaxing airways.


Assuntos
Asma/metabolismo , Cálcio/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Miócitos de Músculo Liso/metabolismo , Broncoconstrição/fisiologia , Linhagem Celular , Estradiol/metabolismo , Estrogênios/metabolismo , Humanos , Interleucina-13/metabolismo , Contração Muscular/fisiologia , Músculo Liso/metabolismo , Sistema Respiratório/metabolismo , Retículo Sarcoplasmático/metabolismo , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
9.
ACS Appl Bio Mater ; 3(12): 8352-8360, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35019607

RESUMO

Bioprosthetic valves (BPVs) have a limited lifespan in the body necessitating repeated surgeries to replace the failed implant. Early failure of these implants has been linked to various surface properties of the valve. Surface properties of BPVs are significantly different from physiological valves because of the fixation process used when processing the xenograft tissue. To improve the longevity of BPVs, efforts need to be taken to improve the surface properties and shield the implant from the bodily interactions that degrade it. Toward this goal, we evaluated the use of hydrogel coatings to attach to the BPV tissue and impart surface properties that are close to physiological. Hydrogels are well characterized for their biocompatibility and highly tunable surface characteristics. Using a previously published coating method, we deposited hydrogel coatings of poly(ethylene glycol)diacrylate (PEGDA) and poly(ethylene glycol)diacrylamide (PEGDAA) atop BPV samples. Coated samples were evaluated against the physiological tissue and uncoated glutaraldehyde-fixed tissue for deposition of hydrogel, surface adherence, mechanical properties, and fixation properties. Results showed both PEGDA- and PEGDAA-deposited coatings were nearly continuous across the valve leaflet surface. Further, the PEGDA- and PEGDAA-coated samples showed restoration of physiological levels of protein adhesion and mechanical stiffness. Interestingly, the coating process rather than the coating itself altered the material behavior yet did not alter the cross-linking from fixation. These results show that the PEG-based coatings for BPVs can successfully alter surface properties of BPVs and help promote physiological characteristics without interfering with the necessary fixation.

10.
ACS Appl Bio Mater ; 3(3): 1321-1330, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35021626

RESUMO

Bioprosthetic heart valve implants are beset by calcification and failure due to the interactions between the body and the transplant. Hydrogels can be used as biological blank slates that may help to shield implants from these interactions; however, traditional light-based hydrogel polymerization is impeded by tissue opacity and topography. Therefore, new methods must be created to bind hydrogel to implant tissues. To address these complications, a two-step surface-coating method for bioprosthetic valves was developed. A previously developed bioprosthetic valve model (VM) was used to investigate and optimize the coating method. Generally, this coating is achieved by first reacting surface amine groups with an NHS-PEG-acrylate while also allowing glucose to absorb into the bulk. Then, glucose oxidase, poly(ethylene glycol) diacrylate (PEGDA), and iron ions are added to the system to initiate free-radical polymerization that bonds the PEGDA hydrogel to the acrylates sites on the surface. Results showed a thin (∼8 µm), continuous coating on VM samples that is capable of repelling protein adhesion (2% surface fouling versus 20% on uncoated samples) and does not significantly affect the surface mechanical properties. Based on this success, the coating method was translated to glutaraldehyde-fixed valve tissue samples. Results showed noncontinuous but evident coating on the surface, which was further improved by adjusting the coating solution. These results demonstrate the feasibility of the proposed two-step surface coating method for modifying the surface of bioprosthetic valve replacements.

11.
JCI Insight ; 4(23)2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31647782

RESUMO

The choroid plexus (ChP) is a highly vascularized tissue found in the brain ventricles, with an apical epithelial cell layer surrounding fenestrated capillaries. It is responsible for the production of most of the cerebrospinal fluid (CSF) in the ventricular system, subarachnoid space, and central canal of the spinal cord, while also constituting the blood-CSF barrier (BCSFB). In addition, epithelial cells of the ChP (EChP) synthesize neurotrophic factors and other signaling molecules that are released into the CSF. Here, we show that insulin is produced in EChP of mice and humans, and its expression and release are regulated by serotonin. Insulin mRNA and immune-reactive protein, including C-peptide, are present in EChP, as detected by several experimental approaches, and appear in much higher levels than any other brain region. Moreover, insulin is produced in primary cultured mouse EChP, and its release, albeit Ca2+ sensitive, is not regulated by glucose. Instead, activation of the 5HT2C receptor by serotonin treatment led to activation of IP3-sensitive channels and Ca2+ mobilization from intracellular storage, leading to insulin secretion. In vivo depletion of brain serotonin in the dorsal raphe nucleus negatively affected insulin expression in the ChP, suggesting an endogenous modulation of ChP insulin by serotonin. Here, we show for the first time to our knowledge that insulin is produced by EChP in the brain, and its release is modulated at least by serotonin but not glucose.


Assuntos
Plexo Corióideo/metabolismo , Insulina/metabolismo , Serotonina/metabolismo , Transdução de Sinais , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Cálcio/metabolismo , Líquido Cefalorraquidiano/metabolismo , Células Epiteliais , Expressão Gênica , Glucose , Humanos , Insulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , RNA Mensageiro/metabolismo
12.
Nutr Metab (Lond) ; 16: 48, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31372175

RESUMO

BACKGROUND: Although type 2 diabetes mellitus (T2DM) is primarily characterized by sustained high levels of circulating glucose, other factors, such as obesity, chronic inflammation, fatty liver, and islet dysfunction significantly contribute to the development of this disease. To date, curcumin (CUR), a natural polyphenol and primary component of turmeric, shows putative therapeutic properties such as reducing the incidence of obesity-related diseases in mice. However, the mechanism by which CUR regulates insulin levels remains unclear. METHODS: This study investigates how dietary CUR improves insulin clearance and maintains a proper range of circulating insulin level in the diet-induced obesity (DIO) mouse model. Male C57BL/6 J mice were fed a control, a high fat/high sugar (HFS) or a HFS diet containing 0.4% (w/w) curcumin (HFS + CUR) (N = 16 per group) for 16 weeks. RESULTS: Mice given HFS + CUR had reduced body weight and fat accumulation in the liver and had lower blood insulin levels under fasting conditions compared to mice on HFS alone, resulting from significantly improved insulin clearance via upregulation of hepatic insulin-degrading enzyme (IDE). We also observed restoration of phosphoinositide 3-kinase (PI3K), especially class Ia catalytic subunits, p110α and p110ß, and class Ib regulatory subunit, p101, and phosphorylated protein kinase B (AKT) expression levels in liver on HFS + CUR diet. Additionally, HFS + CUR fed mice had significantly smaller islets of Langerhans and increased glucagon contents compared to HFS fed mice, indicating less secretion of insulin in pancreas. The expression of thioredoxin interacting protein (TXNIP), a pro-oxidant and pro-apoptotic protein, was significantly elevated in mouse and human islets cultured under HFS mimicking conditions, which was mitigated by CUR treatment. CONCLUSIONS: CUR supplementation in obese subjects may alleviate the burden imposed by HFS diets. Our data indicate administration of dietary CUR reinstates PI3K, AKT and IDE levels in obese mice. Additionally, CUR treatment preserves islet integrity by downregulation of TXNIP transcription levels. Therefore, dietary CUR may have the potential to serve as a novel therapeutic agent to address the underlying links of obesity and T2DM.

13.
FASEB J ; 33(5): 5850-5863, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30726112

RESUMO

Sarcopenic obesity, the combination of skeletal muscle mass and function loss with an increase in body fat, is associated with physical limitations, cardiovascular diseases, metabolic stress, and increased risk of mortality. Cannabinoid receptor type 1 (CB1R) plays a critical role in the regulation of whole-body energy metabolism because of its involvement in controlling appetite, fuel distribution, and utilization. Inhibition of CB1R improves insulin secretion and insulin sensitivity in pancreatic ß-cells and hepatocytes. We have now developed a skeletal muscle-specific CB1R-knockout (Skm-CB1R-/-) mouse to study the specific role of CB1R in muscle. Muscle-CB1R ablation prevented diet-induced and age-induced insulin resistance by increasing IR signaling. Moreover, muscle-CB1R ablation enhanced AKT signaling, reducing myostatin expression and increasing IL-6 secretion. Subsequently, muscle-CB1R ablation increased myogenesis through its action on MAPK-mediated myogenic gene expression. Consequently, Skm-CB1R-/- mice had increased muscle mass and whole-body lean/fat ratio in obesity and aging. Muscle-CB1R ablation improved mitochondrial performance, leading to increased whole-body muscle energy expenditure and improved physical endurance, with no change in body weight. These results collectively show that CB1R in muscle is sufficient to regulate whole-body metabolism and physical performance and is a novel target for the treatment of sarcopenic obesity. -González-Mariscal, I., Montoro, R. A., O'Connell, J. F., Kim, Y., Gonzalez-Freire, M., Liu, Q.-R., Alfaras, I., Carlson, O. D., Lehrmann, E., Zhang, Y., Becker, K. G., Hardivillé, S., Ghosh, P., Egan, J. M. Muscle cannabinoid 1 receptor regulates Il-6 and myostatin expression, governing physical performance and whole-body metabolism.


Assuntos
Interleucina-6/metabolismo , Músculo Esquelético/metabolismo , Miostatina/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Transdução de Sinais , Envelhecimento , Animais , Composição Corporal , Peso Corporal , Linhagem Celular , Dieta , Feminino , Hepatócitos/metabolismo , Insulina/metabolismo , Resistência à Insulina , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Fosfoproteínas/metabolismo
14.
Ann Thorac Surg ; 105(2): 572-580, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29223417

RESUMO

BACKGROUND: Aortic regurgitation is a prevalent, detrimental complication of left ventricular assist devices (LVADs). The altered hemodynamics of LVADs results in aortic valves (AVs) having distinct mechanical stimulation. Our hypothesis was that the altered AV hemodynamics modulates the valve cells and matrix, resulting in changes in valvular mechanical properties that then can lead to regurgitation. METHODS: AVs were collected from 16 LVAD and 6 non-LVAD patients at time of heart transplant. Standard demographic and preoperative data were collected and comparisons between the two groups were calculated using standard statistical methods. Samples were analyzed using biaxial mechanical tensile testing, mass spectrometry-based proteomics, and transmission electron microscopy to assess ultrastructure. RESULTS: The maximum circumferential leaflet strain in LVAD patients was less than in non-LVAD patients (0.35 ± 0.10MPa versus 0.52 ± 0.18 MPa, p = 0.03) with a trend of reduced radial strain (p = 0.06) and a tendency for the radial strain to decrease with increasing LVAD duration (p = 0.063). Numerous proteins associated with actin and myosin, immune signaling and oxidative stress, and transforming growth factor ß were increased in LVAD patients. Ultrastructural analysis showed a trend of increased fiber diameter in LVAD patients (46.2 ± 7.2 nm versus 45.1 ± 6.9 nm, p = 0.10), but no difference in fiber density. CONCLUSIONS: AVs in LVAD patients showed decreased compliance and increased expression of numerous proteins related to valve activation and injury compared to non-LVAD patients. Further knowledge of AV changes leading to regurgitation in LVAD patients and the pathways by which they occur may provide an opportunity for interventions to prevent and/or reverse this detrimental complication.


Assuntos
Insuficiência da Valva Aórtica/etiologia , Valva Aórtica/ultraestrutura , Insuficiência Cardíaca/cirurgia , Coração Auxiliar/efeitos adversos , Hemodinâmica/fisiologia , Estresse Oxidativo/fisiologia , Proteômica/métodos , Valva Aórtica/metabolismo , Valva Aórtica/fisiopatologia , Insuficiência da Valva Aórtica/diagnóstico , Insuficiência da Valva Aórtica/fisiopatologia , Citocinas/metabolismo , Feminino , Insuficiência Cardíaca/metabolismo , Humanos , Masculino , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Estudos Retrospectivos , Resistência à Tração
15.
Methodist Debakey Cardiovasc J ; 11(3): 176-80, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26634026

RESUMO

The technological development of induced pluripotent stem cells (iPSCs) has overcome many of the limitations of adult and embryonic stem cells. We have found that activation of innate immunity signaling is necessary for this process, as it facilitates epigenetic plasticity in cells by a process called transflammation. More recently, we have discovered that transflammation also facilitates the transdifferentiation of cells directly from one somatic cell type to another. This insight may lead to a promising therapeutic pathway that avoids reverting cells all the way back to pluripotency before achieving a cell type of interest. While there is much therapeutic promise to transflammation and transdifferentiation, there is also evidence that transdifferentiation plays a role in some pathological conditions, including atherosclerosis. Ultimately, better understanding of transflammation will facilitate the development of regenerative therapies.


Assuntos
Transdiferenciação Celular , Células-Tronco Pluripotentes Induzidas/transplante , Isquemia Miocárdica/cirurgia , Miocárdio/patologia , Miócitos Cardíacos/transplante , Transplante de Células-Tronco/métodos , Animais , Biomarcadores/metabolismo , Humanos , Imunidade Inata , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Isquemia Miocárdica/imunologia , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Isquemia Miocárdica/fisiopatologia , Miocárdio/imunologia , Miocárdio/metabolismo , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fenótipo , Síndrome
16.
Acta Crystallogr E Crystallogr Commun ; 71(Pt 3): 309-11, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25844195

RESUMO

The five-coordinate Cu(II) atom in the title complex [CuCl2(C16H19N3)]·0.5C4H10O, adopts a near-ideal square-pyramidal geometry (τ-5 = 0.01). The apical Cu-Cl distance is 0.2626 (6) Šlonger than the basal Cu-Cl distance. Weak C-H⋯Cl interactions between pyridine rings and the Cl atoms of adjacent complex molecules are present. The solvent molecule, located on a twofold rotation axis, is situated in the voids of this arrangement. Copper atoms coordinated by tridentate nitro-gen-containing ligands have been found to be excellent promoters of Atom Transfer Radical Addition (ATRA) reactions.

17.
J Biomed Mater Res A ; 103(8): 2645-53, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25631778

RESUMO

One of the greatest challenges in regenerative medicine is generating clinically relevant engineered tissues with functional blood vessels. Vascularization is a key hurdle faced in designing tissue constructs larger than the in vivo limit of oxygen diffusion. In this study, we utilized fibrin-based hydrogels to serve as a foundation for vascular formation, poly(ethylene glycol) (PEG) to modify fibrinogen and increase scaffold longevity, and human amniotic fluid-derived stem cells (AFSC) as a source of vascular cell types (AFSC-EC). AFSC hold great potential for use in regenerative medicine strategies, especially those involving autologous congenital applications, and we have shown previously that AFSC-seeded fibrin-PEG hydrogels have the potential to form three-dimensional vascular-like networks in vitro. We hypothesized that subcutaneously injecting these hydrogels in immunodeficient mice would both induce a fibrin-driven angiogenic host response and promote in situ AFSC-derived neovascularization. Two weeks postinjection, hydrogels were sectioned, and the following was demonstrated: the average maximum invasion distance of host murine cells into the subcutaneous fibrin/PEG scaffold was 147 ± 90 µm after 1 week and 395 ± 138 µm after 2 weeks; the average number of cell-lined lumen per square millimeter was significantly higher in hydrogels seeded with stem cells or cocultures containing stem cells (MSC, 36.5 ± 11.4; AFSC, 47.0 ± 18.9; AFSC/AFSC-EC, 32.8 ± 11.6; and MSC/HUVEC, 43.1 ± 25.1) versus endothelial cell types alone (AFSC-EC, 9.7 ± 6.1; HUVEC, 14.2 ± 8.8); and a subset of these lumen were characterized by the presence of red blood cells. Select areas of cell-seeded hydrogels contained CD31(+) lumen surrounded by α-smooth muscle cell support cells, whereas control hydrogels with no cells only showed infiltration of α-smooth muscle cell-positive host cells.


Assuntos
Líquido Amniótico/citologia , Fibrina , Hidrogéis , Polietilenoglicóis , Células-Tronco/citologia , Diferenciação Celular , Células Cultivadas , Humanos , Microscopia Eletrônica de Varredura
18.
Tissue Eng Part A ; 21(7-8): 1185-94, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25517426

RESUMO

A major limitation in tissue engineering strategies for congenital birth defects is the inability to provide a significant source of oxygen, nutrient, and waste transport in an avascular scaffold. Successful vascularization requires a reliable method to generate vascular cells and a scaffold capable of supporting vessel formation. The broad potential for differentiation, high proliferation rates, and autologous availability for neonatal surgeries make amniotic fluid-derived stem cells (AFSC) well suited for regenerative medicine strategies. AFSC-derived endothelial cells (AFSC-EC) express key proteins and functional phenotypes associated with endothelial cells. Fibrin-based hydrogels were shown to stimulate AFSC-derived network formation in vitro but were limited by rapid degradation. Incorporation of poly(ethylene glycol) (PEG) provided mechanical stability (65%±9% weight retention vs. 0% for fibrin-only at day 14) while retaining key benefits of fibrin-based scaffolds-quick formation (10±3 s), biocompatibility (88%±5% viability), and vasculogenic stimulation. To determine the feasibility of AFSC-derived microvasculature, we compared AFSC-EC as a vascular cell source and AFSC as a perivascular cell source to established sources of these cell types-human umbilical vein endothelial cells (HUVEC) and mesenchymal stem cells (MSC), respectively. Cocultures were seeded at a 4:1 endothelial-to-perivascular cell ratio, and gels were incubated at 37°C for 2 weeks. Mechanical testing was performed using a stress-controlled rheometer (G'=95±10 Pa), and cell-seeded hydrogels were assessed based on morphology. Network formation was analyzed based on key parameters such as vessel thickness, length, and area, as well as the degree of branching. There was no statistical difference between individual cultures of AFSC-EC and HUVEC in regard to these parameters, suggesting the vasculogenic potential of AFSC-EC; however, the development of robust vessels required the presence of both an endothelial and a perivascular cell source and was seen in AFSC cocultures (70%±20% vessel length, 90%±10% vessel area, and 105%±10% vessel thickness compared to HUVEC/MSC). At a fixed seeding density, the coculture of AFSC with AFSC-EC resulted in a synergistic effect on network parameters similar to MSC (150% vessel length, 147% vessel area, 150% vessel thickness, and 155% branching). These results suggest that AFSC-EC and AFSC have significant vasculogenic and perivasculogenic potential, respectively, and are suited for in vivo evaluation.


Assuntos
Líquido Amniótico/citologia , Capilares/fisiologia , Fibrina/farmacologia , Hidrogéis/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Células-Tronco/citologia , Capilares/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Separação Celular , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Células-Tronco/efeitos dos fármacos
19.
Ann Biomed Eng ; 42(12): 2490-500, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25266932

RESUMO

Amniotic fluid-derived stem cells (AFSC) have been shown to be broadly multipotent and non-tumorogenic. Previous studies of direct mixing of AFSC and neonatal rat ventricle myocytes indicated evidence of AFSC cardiogenesis. In this study, we examined human AFSC cardiogenic potential in indirect co-culture with human cardiac cells in conditions that eliminated the possibility of cell fusion. Human AFSC in contact with human cardiac cells showed expression of cardiac troponin T (cTnT) in immunohistochemistry, and no evidence of cell fusion was found through fluorescent in situ hybridization. When indirectly co-cultured with cardiac cells, human AFSC in contact with cardiac cells across a thin porous membrane showed a statistically significant increase in cTnT expression compared to non-contact conditions but lacked upregulation of calcium modulating proteins and did not have functional or morphological characteristics of mature cardiomyocytes. This suggests that contact is a necessary but not sufficient condition for AFSC cardiac differentiation in co-culture with cardiac cells.


Assuntos
Miócitos Cardíacos/citologia , Células-Tronco/citologia , Líquido Amniótico/citologia , Comunicação Celular , Diferenciação Celular , Técnicas de Cocultura , Humanos , Hibridização in Situ Fluorescente , Células-Tronco/metabolismo , Troponina T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA