Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36778495

RESUMO

Acute gastrointestinal intestinal GVHD (aGI-GVHD) is a serious complication of allogeneic hematopoietic stem cell transplantation, and the intestinal microbiota is known to impact on its severity. However, an association between treatment response of aGI-GVHD and the intestinal microbiota has not been well-studied. In a cohort of patients with aGI-GVHD (n=37), we found that non-response to standard therapy with corticosteroids was associated with prior treatment with carbapenem antibiotics and loss of Bacteroides ovatus from the microbiome. In a mouse model of carbapenem-aggravated GVHD, introducing Bacteroides ovatus reduced severity of GVHD and improved survival. Bacteroides ovatus reduced degradation of colonic mucus by another intestinal commensal, Bacteroides thetaiotaomicron, via its ability to metabolize dietary polysaccharides into monosaccharides, which then inhibit mucus degradation by Bacteroides thetaiotaomicron and reduce GVHD-related mortality.

2.
Sci Transl Med ; 14(671): eabo3445, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36383683

RESUMO

Not all patients with cancer and severe neutropenia develop fever, and the fecal microbiome may play a role. In a single-center study of patients undergoing hematopoietic cell transplant (n = 119), the fecal microbiome was characterized at onset of severe neutropenia. A total of 63 patients (53%) developed a subsequent fever, and their fecal microbiome displayed increased relative abundances of Akkermansia muciniphila, a species of mucin-degrading bacteria (P = 0.006, corrected for multiple comparisons). Two therapies that induce neutropenia, irradiation and melphalan, similarly expanded A. muciniphila and additionally thinned the colonic mucus layer in mice. Caloric restriction of unirradiated mice also expanded A. muciniphila and thinned the colonic mucus layer. Antibiotic treatment to eradicate A. muciniphila before caloric restriction preserved colonic mucus, whereas A. muciniphila reintroduction restored mucus thinning. Caloric restriction of unirradiated mice raised colonic luminal pH and reduced acetate, propionate, and butyrate. Culturing A. muciniphila in vitro with propionate reduced utilization of mucin as well as of fucose. Treating irradiated mice with an antibiotic targeting A. muciniphila or propionate preserved the mucus layer, suppressed translocation of flagellin, reduced inflammatory cytokines in the colon, and improved thermoregulation. These results suggest that diet, metabolites, and colonic mucus link the microbiome to neutropenic fever and may guide future microbiome-based preventive strategies.


Assuntos
Microbioma Gastrointestinal , Transplante de Células-Tronco Hematopoéticas , Neoplasias , Neutropenia , Camundongos , Animais , Propionatos , Verrucomicrobia , Muco/metabolismo , Mucinas/metabolismo , Dieta , Neutropenia/metabolismo , Neoplasias/metabolismo
3.
Nat Commun ; 10(1): 3650, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409776

RESUMO

The intestinal immune system is emerging as an important contributor to obesity-related insulin resistance, but the role of intestinal B cells in this context is unclear. Here, we show that high fat diet (HFD) feeding alters intestinal IgA+ immune cells and that IgA is a critical immune regulator of glucose homeostasis. Obese mice have fewer IgA+ immune cells and less secretory IgA and IgA-promoting immune mediators. HFD-fed IgA-deficient mice have dysfunctional glucose metabolism, a phenotype that can be recapitulated by adoptive transfer of intestinal-associated pan-B cells. Mechanistically, IgA is a crucial link that controls intestinal and adipose tissue inflammation, intestinal permeability, microbial encroachment and the composition of the intestinal microbiome during HFD. Current glucose-lowering therapies, including metformin, affect intestinal-related IgA+ B cell populations in mice, while bariatric surgery regimen alters the level of fecal secretory IgA in humans. These findings identify intestinal IgA+ immune cells as mucosal mediators of whole-body glucose regulation in diet-induced metabolic disease.


Assuntos
Imunoglobulina A/imunologia , Resistência à Insulina , Obesidade/imunologia , Tecido Adiposo/imunologia , Animais , Linfócitos B/imunologia , Estudos de Coortes , Fezes/microbiologia , Microbioma Gastrointestinal , Glucose/metabolismo , Humanos , Intestinos/imunologia , Masculino , Camundongos , Obesidade/metabolismo , Obesidade/microbiologia
4.
Science ; 363(6430): 993-998, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30819965

RESUMO

Immunoglobulin A (IgA) is the major secretory immunoglobulin isotype found at mucosal surfaces, where it regulates microbial commensalism and excludes luminal factors from contacting intestinal epithelial cells (IECs). IgA is induced by both T cell-dependent and -independent (TI) pathways. However, little is known about TI regulation. We report that IEC endoplasmic reticulum (ER) stress induces a polyreactive IgA response, which is protective against enteric inflammation. IEC ER stress causes TI and microbiota-independent expansion and activation of peritoneal B1b cells, which culminates in increased lamina propria and luminal IgA. Increased numbers of IgA-producing plasma cells were observed in healthy humans with defective autophagy, who are known to exhibit IEC ER stress. Upon ER stress, IECs communicate signals to the peritoneum that induce a barrier-protective TI IgA response.


Assuntos
Estresse do Retículo Endoplasmático , Células Epiteliais/imunologia , Imunidade nas Mucosas , Imunoglobulina A/imunologia , Mucosa Intestinal/imunologia , Animais , Autofagia , Proteínas Relacionadas à Autofagia/genética , Humanos , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmócitos/imunologia , Técnicas de Cultura de Tecidos , Proteína 1 de Ligação a X-Box/genética
5.
Front Immunol ; 4: 402, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24348474

RESUMO

Viral gastroenteritis is one of the leading causes of diseases that kill ~2.2 million people worldwide each year. IgA is one of the major immune effector products present in the gastrointestinal tract yet its importance in protection against gastrointestinal viral infections has been difficult to prove. In part this has been due to a lack of small and large animal models in which pathogenesis of and immunity to gastrointestinal viral infections is similar to that in humans. Much of what we have learned about the role of IgA in the intestinal immune response has been obtained from experimental animal models of rotavirus infection. Rotavirus-specific intestinal IgA appears to be one of the principle effectors of long term protection against rotavirus infection. Thus, there has been a focus on understanding the immunological pathways through which this virus-specific IgA is induced during infection. In addition, the experimental animal models of rotavirus infection provide excellent systems in which new areas of research on viral-specific intestinal IgA including the long term maintenance of viral-specific IgA.

6.
J Virol ; 87(1): 524-30, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23097456

RESUMO

Rotavirus is a major cause of pediatric diarrheal illness worldwide. To explore the role of organized intestinal lymphoid tissues in infection by and immunity to rotavirus, lymphotoxin alpha-deficient (LTα(-/-)) mice that lack Peyer's patches and mesenteric lymph nodes were orally infected with murine rotavirus. Systemic rotavirus was cleared within 10 days in both LTα(-/-) and wild-type mice, and both strains developed early and sustained serum antirotavirus antibody responses. However, unlike wild-type mice, which resolved the intestinal infection within 10 days, LTα(-/-) mice shed fecal virus for approximately 50 days after inoculation. The resolution of fecal virus shedding occurred concurrently with induction of intestinal rotavirus-specific IgA in both mouse strains. Induction of intestinal rotavirus-specific IgA in LTα(-/-) mice correlated with the (late) appearance of IgA-producing plasma cells in the small intestine. This, together with the absence of rotavirus-specific serum IgA, implies that secretory rotavirus-specific IgA was produced locally. These findings indicate that serum IgG responses are insufficient and imply that local intestinal IgA responses are important for the clearance of rotavirus from intestinal tissues. Furthermore, they show that while LTα-dependent lymphoid tissues are important for the generation of IgA-producing B cells in the intestine, they are not absolutely required in the setting of rotavirus infection. Moreover, the induction of local IgA-producing B cell responses can occur late after infection and in an LTα-independent manner.


Assuntos
Imunidade nas Mucosas , Imunoglobulina A/imunologia , Linfotoxina-alfa/deficiência , Infecções por Rotavirus/imunologia , Rotavirus/imunologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Fezes/virologia , Feminino , Imunoglobulina A/sangue , Intestino Delgado/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Plasmócitos/imunologia , Fatores de Tempo , Eliminação de Partículas Virais
7.
J Virol ; 80(24): 12377-86, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17005639

RESUMO

Unexpected reports of intussusception after vaccination with the live tetravalent rotavirus vaccine RotaShield resulted in voluntary withdrawal of the vaccine. Intussusception, a condition in which the intestine acutely invaginates upon itself, is the most common cause of intestinal obstruction in children. We report here the development of a mouse model to study rotavirus-induced intussusception. In this model, both homologous murine and heterologous simian rotavirus strains significantly enhanced the rate of lipopolysaccharide (LPS)-induced intussusception, and this enhancement was replication dependent, requiring rotavirus doses of greater than one 50% infectious dose. Rotavirus-induced intussusceptions did not have observable lymphoid lead points, despite the induction of intestinal lymphoid hyperplasia after rotavirus infection. Intussusceptions are also postulated to result from altered intestinal motility, but rotavirus infection had no effect on gastrointestinal transit. LPS-induced intussusception is associated with the induction of inflammatory mediators, and intussusception rates can be modified by inflammatory antagonists. We show that rotavirus infection significantly enhanced serum tumor necrosis factor alpha and gamma interferon cytokine levels after LPS treatment compared to uninfected mice. Together, these data suggest that rotavirus infection sensitized mice to the inflammatory effects of subsequent LPS treatment to enhance intussusception rates.


Assuntos
Intussuscepção/induzido quimicamente , Intussuscepção/virologia , Lipopolissacarídeos/toxicidade , Infecções por Rotavirus/complicações , Vacinas contra Rotavirus/efeitos adversos , Rotavirus , Animais , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Trânsito Gastrointestinal/efeitos dos fármacos , Interferon gama/sangue , Intussuscepção/etiologia , Intussuscepção/patologia , Camundongos , Fator de Necrose Tumoral alfa/sangue
8.
J Virol ; 80(10): 4820-32, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16641274

RESUMO

Rotaviruses infect mature, differentiated enterocytes of the small intestine and, by an unknown mechanism, escape the gastrointestinal tract and cause viremia. The neonatal rat model of rotavirus infection was used to determine the kinetics of viremia, spread, and pathology of rotavirus in extraintestinal organs. Five-day-old rat pups were inoculated intragastrically with an animal (RRV) or human (HAL1166) rotavirus or phosphate-buffered saline. Blood was collected from a subset of rat pups, and following perfusion to remove residual blood, organs were removed and homogenized to analyze rotavirus-specific antigen by enzyme-linked immunosorbent assay and infectious rotavirus by fluorescent focus assay or fixed in formalin for histology and immunohistochemistry. Viremia was detected following rotavirus infection with RRV and HAL1166. The RRV 50% antigenemia dose was 1.8 x 10(3) PFU, and the 50% diarrhea dose was 7.7 x 10(5) PFU, indicating that infection and viremia occurred in the absence of diarrhea and that detecting rotavirus antigen in the blood was a more sensitive measure of infection than diarrhea. Rotavirus antigens and infectious virus were detected in multiple organs (stomach, intestines, liver, lungs, spleen, kidneys, pancreas, thymus, and bladder). Histopathological changes due to rotavirus infection included acute inflammation of the portal tract and bile duct, microsteatosis, necrosis, and inflammatory cell infiltrates in the parenchymas of the liver and lungs. Colocalization of structural and nonstructural proteins with histopathology in the liver and lungs indicated that the histological changes observed were due to rotavirus infection and replication. Replicating rotavirus was also detected in macrophages in the lungs and blood vessels, indicating a possible mechanism of rotavirus dissemination. Extraintestinal infectious rotavirus, but not diarrhea, was observed in the presence of passively or actively acquired rotavirus-specific antibody. These findings alter the previously accepted concept of rotavirus pathogenesis to include not only gastroenteritis but also viremia, and they indicate that rotavirus could cause a broad array of systemic diseases in a number of different organs.


Assuntos
Infecções por Rotavirus/imunologia , Rotavirus/imunologia , Viremia/imunologia , Animais , Animais Recém-Nascidos , Antígenos Virais/sangue , Linhagem Celular , Modelos Animais de Doenças , Feminino , Macrófagos/imunologia , Macrófagos/virologia , Camundongos , Especificidade de Órgãos/imunologia , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Infecções por Rotavirus/patologia , Infecções por Rotavirus/urina , Viremia/patologia , Viremia/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA