Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Comput Assist Radiol Surg ; 19(6): 1129-1136, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38600411

RESUMO

PURPOSE: Real-time assessment of surgical margins is critical for favorable outcomes in cancer patients. The iKnife is a mass spectrometry device that has demonstrated potential for margin detection in cancer surgery. Previous studies have shown that using deep learning on iKnife data can facilitate real-time tissue characterization. However, none of the existing literature on the iKnife facilitate the use of publicly available, state-of-the-art pretrained networks or datasets that have been used in computer vision and other domains. METHODS: In a new framework we call ImSpect, we convert 1D iKnife data, captured during basal cell carcinoma (BCC) surgery, into 2D images in order to capitalize on state-of-the-art image classification networks. We also use self-supervision to leverage large amounts of unlabeled, intraoperative data to accommodate the data requirements of these networks. RESULTS: Through extensive ablation studies, we show that we can surpass previous benchmarks of margin evaluation in BCC surgery using iKnife data, achieving an area under the receiver operating characteristic curve (AUC) of 81%. We also depict the attention maps of the developed DL models to evaluate the biological relevance of the embedding space CONCLUSIONS: We propose a new method for characterizing tissue at the surgical margins, using mass spectrometry data from cancer surgery.


Assuntos
Carcinoma Basocelular , Margens de Excisão , Espectrometria de Massas , Neoplasias Cutâneas , Humanos , Espectrometria de Massas/métodos , Carcinoma Basocelular/cirurgia , Carcinoma Basocelular/diagnóstico por imagem , Carcinoma Basocelular/patologia , Neoplasias Cutâneas/cirurgia , Neoplasias Cutâneas/diagnóstico por imagem , Aprendizado de Máquina Supervisionado , Aprendizado Profundo
2.
Int J Med Robot ; 20(1): e2618, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38536711

RESUMO

PURPOSE: This work presents the design and preliminary validation of a Magnetic Resonance (MR) conditional robot for lumbar injection for the treatment of lower back pain. METHODS: This is a 4-degree-of-freedom (DOF) robot that is 200 × 230 × 130 mm3 in volume and has a mass of 0.8 kg. Its lightweight and compact features allow it to be directly affixed to patient's back, establishing a rigid connection, thus reducing positional errors caused by patient movements during treatment. RESULTS: To validate the positioning accuracy of the needle by the robot, an electromagnetic (EM) tracking system and a needle with an EM sensor embedded in the tip were used for the free space evaluation with position accuracy of 0.88 ± 0.46 mm and phantom mock insertions using the Loop-X CBCT scanner with target position accuracy of 3.62 ± 0.92 mm. CONCLUSION: Preliminary experiments demonstrated that the proposed robot showed improvements and benefits in its rotation range, flexible needle adjustment, and sensor protection compared with previous and existing systems, offering broader clinical applications.


Assuntos
Robótica , Humanos , Imageamento por Ressonância Magnética , Agulhas , Espectroscopia de Ressonância Magnética , Injeções Espinhais
3.
Int J Comput Assist Radiol Surg ; 17(12): 2305-2313, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36175747

RESUMO

PURPOSE: Rapid evaporative ionization mass spectrometry (REIMS) is an emerging technology for clinical margin detection. Deployment of REIMS depends on construction of reliable deep learning models that can categorize tissue according to its metabolomic signature. Challenges associated with developing these models include the presence of noise during data acquisition and the variance in tissue signatures between patients. In this study, we propose integration of uncertainty estimation in deep models to factor predictive confidence into margin detection in cancer surgery. METHODS: iKnife is used to collect 693 spectra of cancer and healthy samples acquired from 91 patients during basal cell carcinoma resection. A Bayesian neural network and two baseline models are trained on these data to perform classification as well as uncertainty estimation. The samples with high estimated uncertainty are then removed, and new models are trained using the clean data. The performance of proposed and baseline models, with different ratios of filtered data, is then compared. RESULTS: The data filtering does not improve the performance of the baseline models as they cannot provide reliable estimations of uncertainty. In comparison, the proposed model demonstrates a statistically significant improvement in average balanced accuracy (75.2%), sensitivity (74.1%) and AUC (82.1%) after removing uncertain training samples. We also demonstrate that if highly uncertain samples are predicted and removed from the test data, sensitivity further improves to 88.2%. CONCLUSIONS: This is the first study that applies uncertainty estimation to inform model training and deployment for tissue recognition in cancer surgery. Uncertainty estimation is leveraged in two ways: by factoring a measure of input noise in training the models and by including predictive confidence in reporting the outputs. We empirically show that considering uncertainty for model development can help improve the overall accuracy of a margin detection system using REIMS.


Assuntos
Margens de Excisão , Neoplasias , Humanos , Incerteza , Teorema de Bayes , Espectrometria de Massas/métodos , Neoplasias/diagnóstico , Neoplasias/cirurgia
4.
J Imaging ; 7(10)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34677289

RESUMO

Mass spectrometry is an effective imaging tool for evaluating biological tissue to detect cancer. With the assistance of deep learning, this technology can be used as a perioperative tissue assessment tool that will facilitate informed surgical decisions. To achieve such a system requires the development of a database of mass spectrometry signals and their corresponding pathology labels. Assigning correct labels, in turn, necessitates precise spatial registration of histopathology and mass spectrometry data. This is a challenging task due to the domain differences and noisy nature of images. In this study, we create a registration framework for mass spectrometry and pathology images as a contribution to the development of perioperative tissue assessment. In doing so, we explore two opportunities in deep learning for medical image registration, namely, unsupervised, multi-modal deformable image registration and evaluation of the registration. We test this system on prostate needle biopsy cores that were imaged with desorption electrospray ionization mass spectrometry (DESI) and show that we can successfully register DESI and histology images to achieve accurate alignment and, consequently, labelling for future training. This automation is expected to improve the efficiency and development of a deep learning architecture that will benefit the use of mass spectrometry imaging for cancer diagnosis.

5.
Int J Comput Assist Radiol Surg ; 15(5): 887-896, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32323209

RESUMO

PURPOSE: Basal cell carcinoma (BCC) is the most commonly diagnosed cancer and the number of diagnosis is growing worldwide due to increased exposure to solar radiation and the aging population. Reduction of positive margin rates when removing BCC leads to fewer revision surgeries and consequently lower health care costs, improved cosmetic outcomes and better patient care. In this study, we propose the first use of a perioperative mass spectrometry technology (iKnife) along with a deep learning framework for detection of BCC signatures from tissue burns. METHODS: Resected surgical specimen were collected and inspected by a pathologist. With their guidance, data were collected by burning regions of the specimen labeled as BCC or normal, with the iKnife. Data included 190 scans of which 127 were normal and 63 were BCC. A data augmentation approach was proposed by modifying the location and intensity of the peaks of the original spectra, through noise addition in the time and frequency domains. A symmetric autoencoder was built by simultaneously optimizing the spectral reconstruction error and the classification accuracy. Using t-SNE, the latent space was visualized. RESULTS: The autoencoder achieved an accuracy (standard deviation) of 96.62 (1.35%) when classifying BCC and normal scans, a statistically significant improvement over the baseline state-of-the-art approach used in the literature. The t-SNE plot of the latent space distinctly showed the separability between BCC and normal data, not visible with the original data. Augmented data resulted in significant improvements to the classification accuracy of the baseline model. CONCLUSION: We demonstrate the utility of a deep learning framework applied to mass spectrometry data for surgical margin detection. We apply the proposed framework to an application with light surgical overhead and high incidence, the removal of BCC. The learnt models can accurately separate BCC from normal tissue.


Assuntos
Carcinoma Basocelular/cirurgia , Aprendizado Profundo , Margens de Excisão , Neoplasias Cutâneas/cirurgia , Carcinoma Basocelular/patologia , Estudos de Viabilidade , Humanos , Procedimentos de Cirurgia Plástica , Sensibilidade e Especificidade , Neoplasias Cutâneas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA