Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuroendocrinology ; 111(12): 1201-1218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33333517

RESUMO

INTRODUCTION: Food intake varies during the ovarian hormone/estrous cycle in humans and rodents, an effect mediated mainly by estradiol. A potential mediator of the central anorectic effects of estradiol is the neuropeptide relaxin-3 (RLN3) synthetized in the nucleus incertus (NI) and acting via the relaxin family peptide-3 receptor (RXFP3). METHODS: We investigated the relationship between RLN3/RXFP3 signaling and feeding behavior across the female rat estrous cycle. We used in situ hybridization to investigate expression patterns of Rln3 mRNA in NI and Rxfp3 mRNA in the hypothalamic paraventricular nucleus (PVN), lateral hypothalamic area (LHA), medial preoptic area (MPA), and bed nucleus of the stria terminalis (BNST), across the estrous cycle. We identified expression of estrogen receptors (ERs) in the NI using droplet digital PCR and assessed the electrophysiological responsiveness of NI neurons to estradiol in brain slices. RESULTS: Rln3 mRNA reached the lowest levels in the NI pars compacta during proestrus. Rxfp3 mRNA levels varied across the estrous cycle in a region-specific manner, with changes observed in the perifornical LHA, magnocellular PVN, dorsal BNST, and MPA, but not in the parvocellular PVN or lateral LHA. G protein-coupled estrogen receptor 1 (Gper1) mRNA was the most abundant ER transcript in the NI. Estradiol inhibited 33% of type 1 NI neurons, including RLN3-positive cells. CONCLUSION: These findings demonstrate that the RLN3/RXFP3 system is modulated by the estrous cycle, and although further studies are required to better elucidate the cellular and molecular mechanisms of estradiol signaling, current results implicate the involvement of the RLN3/RXFP3 system in food intake fluctuations observed across the estrous cycle in female rats.


Assuntos
Estradiol/metabolismo , Ciclo Estral/metabolismo , Região Hipotalâmica Lateral/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Área Pré-Óptica/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Relaxina/metabolismo , Núcleos Septais/metabolismo , Animais , Feminino , RNA Mensageiro/metabolismo , Ratos
2.
Horm Behav ; 118: 104656, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31862208

RESUMO

The influence of estrogens on modifying cognition has been extensively studied, revealing that a wide array of factors can significantly impact cognition, including, but not limited to, subject age, estrogen exposure duration, administration mode, estrogen formulation, stress history, and progestogen presence. Less known is whether long-term, extended exposure to estrogens would benefit or otherwise impact cognition. The present study examined the effects of 17ß-estradiol (E2) exposure for seven months, beginning in late adulthood and continuing into middle age, using a regimen of cyclic exposure (bi-monthly subcutaneous injection of 10 µg E2), or Cyclic+Tonic exposure (bi-monthly subcutaneous injection of 10 µg E2 + Silastic capsules of E2) in ovariectomized female Fischer-344-CDF rats. Subjects were tested on a battery of learning and memory tasks. All groups learned the water radial-arm maze (WRAM) and Morris water maze tasks in a similar fashion, regardless of hormone treatment regimen. In the asymptotic phase of the WRAM, rats administered a Cyclic+Tonic E2 regimen showed enhanced performance when working memory was taxed compared to Vehicle and Cyclic E2 groups. Assessment of spatial memory on object placement and object recognition was not possible due to insufficient exploration of objects; however, the Cyclic+Tonic group showed increased total time spent exploring all objects compared to Vehicle-treated animals. Overall, these data demonstrate that long-term Cyclic+Tonic E2 exposure can result in some long-term cognitive benefits, at least in the spatial working memory domain, in a surgically menopausal rat model.


Assuntos
Envelhecimento/efeitos dos fármacos , Estradiol/administração & dosagem , Memória de Curto Prazo/efeitos dos fármacos , Ovariectomia , Memória Espacial/efeitos dos fármacos , Envelhecimento/fisiologia , Animais , Cognição/efeitos dos fármacos , Relação Dose-Resposta a Droga , Esquema de Medicação , Estradiol/farmacologia , Feminino , Injeções Subcutâneas , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344
3.
PLoS Genet ; 15(4): e1008108, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31017896

RESUMO

RASopathies are a family of related syndromes caused by mutations in regulators of the RAS/Extracellular Regulated Kinase 1/2 (ERK1/2) signaling cascade that often result in neurological deficits. RASopathy mutations in upstream regulatory components, such as NF1, PTPN11/SHP2, and RAS have been well-characterized, but mutation-specific differences in the pathogenesis of nervous system abnormalities remain poorly understood, especially those involving mutations downstream of RAS. Here, we assessed cellular and behavioral phenotypes in mice expressing a Raf1L613V gain-of-function mutation associated with the RASopathy, Noonan Syndrome. We report that Raf1L613V/wt mutants do not exhibit a significantly altered number of excitatory or inhibitory neurons in the cortex. However, we observed a significant increase in the number of specific glial subtypes in the forebrain. The density of GFAP+ astrocytes was significantly increased in the adult Raf1L613V/wt cortex and hippocampus relative to controls. OLIG2+ oligodendrocyte progenitor cells were also increased in number in mutant cortices, but we detected no significant change in myelination. Behavioral analyses revealed no significant changes in voluntary locomotor activity, anxiety-like behavior, or sociability. Surprisingly, Raf1L613V/wt mice performed better than controls in select aspects of the water radial-arm maze, Morris water maze, and cued fear conditioning tasks. Overall, these data show that increased astrocyte and oligodendrocyte progenitor cell (OPC) density in the cortex coincides with enhanced cognition in Raf1L613V/wt mutants and further highlight the distinct effects of RASopathy mutations on nervous system development and function.


Assuntos
Córtex Cerebral/metabolismo , Aprendizagem , Mutação , Neuroglia/metabolismo , Síndrome de Noonan/genética , Síndrome de Noonan/psicologia , Proteínas Proto-Oncogênicas c-raf/genética , Animais , Biomarcadores , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Sistema de Sinalização das MAP Quinases , Aprendizagem em Labirinto , Memória , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Síndrome de Noonan/metabolismo , Oligodendroglia/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo
4.
Sci Transl Med ; 7(297): 297ra113, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26203081

RESUMO

Many neurological and psychiatric maladies originate from the deprivation of the human brain from estrogens. However, current hormone therapies cannot be used safely to treat these conditions commonly associated with menopause because of detrimental side effects in the periphery. The latter also prevents the use of the hormone for neuroprotection. We show that a small-molecule bioprecursor prodrug, 10ß,17ß-dihydroxyestra-1,4-dien-3-one (DHED), converts to 17ß-estradiol in the brain after systemic administration but remains inert in the rest of the body. The localized and rapid formation of estrogen from the prodrug was revealed by a series of in vivo bioanalytical assays and through in vivo imaging in rodents. DHED treatment efficiently alleviated symptoms that originated from brain estrogen deficiency in animal models of surgical menopause and provided neuroprotection in a rat stroke model. Concomitantly, we determined that 17ß-estradiol formed in the brain from DHED elicited changes in gene expression and neuronal morphology identical to those obtained after direct 17ß-estradiol treatment. Together, complementary functional and mechanistic data show that our approach is highly relevant therapeutically, because administration of the prodrug selectively produces estrogen in the brain independently from the route of administration and treatment regimen. Therefore, peripheral responses associated with the use of systemic estrogens, such as stimulation of the uterus and estrogen-responsive tumor growth, were absent. Collectively, our brain-selective prodrug approach may safely provide estrogen neuroprotection and medicate neurological and psychiatric symptoms developing from estrogen deficiency, particularly those encountered after surgical menopause, without the adverse side effects of current hormone therapies.


Assuntos
Androstenodióis/farmacologia , Encéfalo/metabolismo , Estradiol/metabolismo , Estrogênios/metabolismo , Pró-Fármacos/farmacologia , Androstenodióis/uso terapêutico , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Biomarcadores/metabolismo , Encéfalo/efeitos dos fármacos , Isquemia Encefálica/complicações , Isquemia Encefálica/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Estradiol/química , Estrogênios/química , Feminino , Humanos , Células MCF-7 , Neuroproteção/efeitos dos fármacos , Pró-Fármacos/metabolismo , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico , Útero/efeitos dos fármacos
5.
Eur J Neurosci ; 40(9): 3351-62, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25156382

RESUMO

Chronic restraint stress impairs hippocampal-mediated spatial learning and memory, which improves following a post-stress recovery period. Here, we investigated whether brain-derived neurotrophic factor (BDNF), a protein important for hippocampal function, would alter the recovery from chronic stress-induced spatial memory deficits. Adult male Sprague-Dawley rats were infused into the dorsal hippocampal cornu ammonis (CA)3 region with an adeno-associated viral vector containing the sequence for a short hairpin RNA (shRNA) directed against BDNF or a scrambled sequence (Scr). Rats were then chronically restrained (wire mesh, 6 h/day for 21 days) and assessed for spatial learning and memory using a radial arm water maze (RAWM) either immediately after stressor cessation (Str-Imm) or following a 21-day post-stress recovery period (Str-Rec). All groups learned the RAWM task similarly, but differed on the memory retention trials. Rats in the Str-Imm group, regardless of adeno-associated viral contents, committed more errors in the spatial reference memory domain on the single retention trial during day 3 than did the non-stressed controls. Importantly, the typical improvement in spatial memory following the recovery from chronic stress was blocked with the shRNA against BDNF, as Str-Rec-shRNA performed worse on the RAWM compared with the non-stressed controls or Str-Rec-Scr. The stress effects were specific for the reference memory domain, but knockdown of hippocampal BDNF in unstressed controls briefly disrupted spatial working memory as measured by repeated entry errors on day 2 of training. These results demonstrated that hippocampal BDNF was necessary for the recovery from stress-induced hippocampal-dependent spatial memory deficits in the reference memory domain.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Região CA3 Hipocampal/metabolismo , Memória Espacial/fisiologia , Estresse Psicológico/metabolismo , Animais , Regulação para Baixo , Masculino , Ratos , Ratos Sprague-Dawley , Restrição Física
6.
Neurobiol Learn Mem ; 112: 139-47, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24508064

RESUMO

Chronic stress may impose a vulnerability to develop maladaptive fear-related behaviors after a traumatic event. Whereas previous work found that chronic stress impairs the acquisition and recall of extinguished fear, it is unknown how chronic stress impacts nonassociative fear, such as in the absence of the conditioned stimulus (CS) or in a novel context. Male rats were subjected to chronic stress (STR; wire mesh restraint 6 h/d/21d) or undisturbed (CON), then tested on fear acquisition (3 tone-footshock pairings), and two extinction sessions (15 tones/session) within the same context. Then each group was tested (6 tones) in the same context (SAME) or a novel context (NOVEL), and brains were processed for functional activation using Fos immunohistochemistry. Compared to CON, STR showed facilitated fear acquisition, resistance to CS extinction on the first extinction day, and robust recovery of fear responses on the second extinction day. STR also showed robust freezing to the context alone during the first extinction day compared to CON. When tested in the same or a novel context, STR exhibited higher freezing to context than did CON, suggesting that STR-induced fear was independent of context. In support of this, STR showed increased Fos-like expression in the basolateral amygdala and CA1 region of the hippocampus in both the SAME and NOVEL contexts. Increased Fos-like expression was also observed in the central amygdala in STR-NOVEL vs. CON-NOVEL. These data demonstrate that chronic stress enhances fear learning and impairs extinction, and affects nonassociative processes as demonstrated by enhanced fear in a novel context.


Assuntos
Tonsila do Cerebelo/metabolismo , Extinção Psicológica/fisiologia , Medo/fisiologia , Generalização Psicológica/fisiologia , Hipocampo/metabolismo , Proteínas Proto-Oncogênicas c-fos/biossíntese , Transtornos de Estresse Pós-Traumáticos/etiologia , Estresse Psicológico/complicações , Animais , Doença Crônica , Condicionamento Psicológico/fisiologia , Modelos Animais de Doenças , Reação de Congelamento Cataléptica/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/metabolismo
7.
Stress ; 16(5): 587-91, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23662914

RESUMO

Stressors are typically multidimensional, comprised of multiple physical and sensory components that rarely occur as single isolated events. This study used a 2-day stress exposure paradigm to assess functional activation patterns (by Fos expression) in key corticolimbic structures following repeated context, repeated restraint, context followed by restraint or restraint followed by context. On day 1, rats were transported to a novel context and either restrained for 6 h or left undisturbed. On day 2, these two groups were either restrained or not in the same context, then processed for Fos immunohistochemistry. Regardless of prior stress experience, rats exposed to context only on day 2 expressed more Fos-like immunoreactive (IR) labeling in CA1 and CA3 of dorsal hippocampus, basolateral amygdala and central amygdala than those that were not. This pattern was reversed in the dentate gyrus infrapyramidal blade. In contrast, in the infralimbic region of the medial prefrontal cortex (mPFC), the experience of a single restraint on either day 1 or day 2 rats elevated Fos-like IR relative to rats that had been exposed to context alone. These data show that exposure to context produces robust Fos induction in the hippocampus and amygdala, regardless of prior experience with restraint and compared to the immediate experience of restraint, with prior experience modulating Fos expression within the mPFC.


Assuntos
Tonsila do Cerebelo/metabolismo , Região CA1 Hipocampal/metabolismo , Região CA3 Hipocampal/metabolismo , Giro Denteado/metabolismo , Córtex Pré-Frontal/metabolismo , Proteínas Proto-Oncogênicas c-fos/biossíntese , Animais , Genes Precoces/fisiologia , Imuno-Histoquímica , Masculino , Ratos , Restrição Física , Estresse Fisiológico , Estresse Psicológico
8.
Behav Neurosci ; 126(1): 142-56, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22004264

RESUMO

This study investigated the effects of chronic restraint stress and repeated cyclic estradiol pulses on hippocampal CA3 and CA1 dendritic and/or spine morphology and spatial memory in female rats. Sprague-Dawley adult female rats were ovariectomized and then injected over 2 days with 17ß-estradiol (10 µg, s.c.), which was repeated every 4-5 days. While all rats received similar estradiol injection histories, half of the rats were chronically restrained and/or given a final cyclic pulse of estradiol prior to testing on a hippocampal-dependent object placement (OP) task to assess spatial memory. OP testing was performed 2 days after the last restraint session, as well as when the last 2 estradiol pulses best captured the maximal effect on hippocampal CA1 spine density. The data revealed several novel findings: (a) chronic stress or estradiol separately facilitated spatial memory, but did not have the same effects when coadministered, (b) CA1 spine densities negatively correlated with spatial memory, and (c) repeated estradiol pulses failed to prevent stress-induced CA3 dendritic retraction. We also corroborated previous studies showing increased CA1 spine density following estradiol, chronic stress, and behavioral manipulations. The present study uniquely combined chronic stress, repeated estradiol pulses, hippocampal morphology, and behavior within the same animals, allowing for correlational analyses to be performed between CA1 spine morphology and spatial memory. We demonstrate novel findings that chronic stress or estradiol pulses independently facilitate spatial memory, but not when coadministered, and that these effects may involve a balance of CA1 apical spine expression that is independent of CA3 dendritic complexity.


Assuntos
Região CA1 Hipocampal/fisiopatologia , Dendritos/fisiologia , Estradiol/administração & dosagem , Aprendizagem em Labirinto/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Dendritos/efeitos dos fármacos , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/fisiologia , Feminino , Aprendizagem em Labirinto/efeitos dos fármacos , Ovariectomia , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/psicologia
9.
Neurobiol Learn Mem ; 94(3): 422-33, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20807583

RESUMO

Chronic stress and estrogens alter many forebrain regions in female rats that affect cognition. In order to investigate how chronic stress and estrogens influence fear learning and memory, we ovariectomized (OVX) female Sprague-Dawley rats and repeatedly injected them (s.c.) with 17ß-estradiol (E, 10 µg/250 g or sesame oil vehicle, VEH). Concurrently, rats were restrained for 6 h/d/21 d (STR) or left undisturbed (CON). Rats were then fear conditioned with 4 tone-footshock pairings and then after 1 h and 24 h delays, given 15 tone extinction trials. Regardless of E treatment, chronic stress (VEH, E) facilitated freezing to tone during acquisition and extinction following a 1h delay, but not during extinction after a 24 h delay. E did not influence freezing to tone during any phase of fear conditioning for either the control or chronically stressed rats, but did influence contextual conditioning that may have been carried predominately by the STR group. In the second experiment, we investigated "handling" influences on fear conditioning acquisition, given the disparate findings from the current study and previous work (Baran, Armstrong, Niren, & Conrad, 2010; Baran, Armstrong, Niren, Hanna, & Conrad, 2009). Female rats remained gonadally-intact since E did not influence tone fear conditioning. Indeed, brief daily handling (1-3 m/d/21 d) facilitated acquisition of fear conditioning in chronically stressed female rats, and either had no effect or slightly attenuated fear conditioning in controls. Thus, chronic stress impacts amygdala-mediated fear learning in both OVX- and gonadally-intact females as found previously in males, with handling significantly influencing these outcomes.


Assuntos
Aprendizagem por Associação/fisiologia , Condicionamento Clássico/fisiologia , Estradiol/administração & dosagem , Medo/fisiologia , Reação de Congelamento Cataléptica/fisiologia , Estresse Fisiológico/fisiologia , Análise de Variância , Animais , Aprendizagem por Associação/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Eletrochoque , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Medo/efeitos dos fármacos , Feminino , Reação de Congelamento Cataléptica/efeitos dos fármacos , Ovariectomia , Ratos , Ratos Sprague-Dawley , Restrição Física
10.
Hippocampus ; 20(6): 768-86, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19650122

RESUMO

Chronic stress may have different effects on hippocampal CA3 and CA1 neuronal morphology and function depending upon hormonal status, but rarely are manipulations of stress and gonadal steroids combined. Experiment 1 investigated the effects of chronic restraint and 17beta-estradiol replacement on CA3 and CA1 dendritic morphology and spatial learning in ovariectomized (OVX) female Sprague-Dawley rats. OVX rats were implanted with 25% 17beta-estradiol, 100% cholesterol, or blank silastic capsules and then chronically restrained (6h/d/21d) or kept in home cages. 17beta-Estradiol or cholesterol prevented stress-induced CA3 dendritic retraction, increased CA1 apical spine density, and altered CA1 spine shape. The combination of chronic stress and 17beta-estradiol facilitated water maze acquisition compared to chronic stress + blank implants and nonstressed controls + 17beta-estradiol. To further investigate the interaction between 17beta-estradiol and stress on hippocampal morphology, experiment 2 was conducted on gonadally intact, cycling female rats that were chronically restrained (6h/d/21d), and then euthanized at proestrus (high ovarian hormones) or estrus (low ovarian hormones). Cycling female rats failed to show chronic stress-induced CA3 dendritic retraction at either estrous phase. Chronic stress enhanced the ratio of CA1 basal spine heads to headless spines as found in experiment 1. In addition, proestrous rats displayed increased CA1 spine density regardless of stress history. These results show that 17beta-estradiol or cholesterol protect against chronic stress-induced CA3 dendritic retraction in females. These stress- and 17beta-estradiol-induced morphological changes may provide insight into how dendritic complexity and spine properties contribute to spatial ability.


Assuntos
Colesterol/farmacologia , Espinhas Dendríticas/patologia , Estradiol/farmacologia , Fármacos Neuroprotetores/farmacologia , Estresse Psicológico/fisiopatologia , Animais , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/fisiopatologia , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ovariectomia , Ratos , Ratos Sprague-Dawley , Comportamento Espacial/efeitos dos fármacos , Comportamento Espacial/fisiologia
11.
Horm Behav ; 54(3): 386-95, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18579142

RESUMO

Two pulses of 17beta-estradiol (10 microg) are commonly used to increase hippocampal CA1 apical dendritic spine density and alter spatial performance in ovariectomized (OVX) female rats, but rarely are the measures combined. The goal of this study was to use this two-pulse injection protocol repeatedly with intervening wash-out periods in the same rats to: 1) measure spatial ability using different tasks that require hippocampal function and 2) determine whether ovarian hormone depletion for an extended 10-week period reduces 17beta-estradiol's effectiveness in elevating CA1 apical dendritic spine density. Results showed that two injections of 10 microg 17beta-estradiol (72 and 48 h prior to testing and timed to maximize CA1 apical spine density at behavioral assessment) corresponded to improved spatial memory performance on object placement. In contrast, two injections of 5 microg 17beta-estradiol facilitated spatial learning on the water maze compared to rats given two injections of 10 microg 17beta-estradiol or the sesame oil vehicle. Neither 17beta-estradiol dose altered Y-maze performance. As expected, the intermittent two-pulse injection protocol increased CA1 apical spine density, but 10 weeks of OVX without estradiol treatment decreased the effectiveness of 10 microg 17beta-estradiol to increase CA1 apical spine density. Moreover, two pulses of 5 microg 17beta-estradiol injected intermittently failed to alter CA1 apical spine density and decreased basal spine density. These results demonstrate that extended time without ovarian hormones reduces 17beta-estradiol's effectiveness to increase CA1 apical spine density. Collectively, these findings highlight the complex interactions among estradiol, CA1 spine density/morphology, and task requirements, all of which contribute to behavioral outcomes.


Assuntos
Espinhas Dendríticas/fisiologia , Estradiol/farmacologia , Estradiol/fisiologia , Comportamento Exploratório/fisiologia , Hipocampo/fisiologia , Aprendizagem em Labirinto/fisiologia , Orientação/fisiologia , Animais , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/ultraestrutura , Reação de Fuga/efeitos dos fármacos , Reação de Fuga/fisiologia , Comportamento Exploratório/efeitos dos fármacos , Feminino , Hipocampo/anatomia & histologia , Hipocampo/efeitos dos fármacos , Injeções , Aprendizagem em Labirinto/efeitos dos fármacos , Rememoração Mental/efeitos dos fármacos , Rememoração Mental/fisiologia , Orientação/efeitos dos fármacos , Ovariectomia , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Natação
12.
Behav Neurosci ; 120(4): 842-51, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16893290

RESUMO

This study uses an operant, behavioral model to assess the daily changes in the decay rate of short-term memory, motivation, and motor ability in rats exposed to chronic restraint. Restraint decreased reward-related motivation by 50% without altering memory decay rate or motor ability. Moreover, chronic restraint impaired hippocampal-dependent spatial memory on the Y maze (4-hr delay) and produced CA3 dendritic retraction without altering hippocampal-independent maze navigation (1-min delay) or locomotion. Thus, mechanisms underlying motivation for food reward differ from those underlying Y maze exploration, and neurobiological substrates of spatial memory, such as the hippocampus, differ from those that underlie short-term memory. Chronic restraint produces functional, neuromorphological, and physiological alterations that parallel symptoms of depression in humans.


Assuntos
Comportamento Exploratório/fisiologia , Transtornos da Memória/etiologia , Motivação , Atividade Motora/fisiologia , Recompensa , Estresse Fisiológico/fisiopatologia , Glândulas Suprarrenais/fisiologia , Análise de Variância , Animais , Comportamento Animal , Ingestão de Alimentos/fisiologia , Hipocampo/patologia , Hipnóticos e Sedativos/farmacologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/patologia , Tamanho do Órgão/fisiologia , Pentobarbital/farmacologia , Células Piramidais/patologia , Ratos , Ratos Sprague-Dawley , Esquema de Reforço , Estresse Fisiológico/complicações , Estresse Fisiológico/patologia , Fatores de Tempo
13.
Endocrinology ; 147(4): 1664-74, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16410296

RESUMO

Both the magnitude and the duration of the hormonal stress response change dramatically during neonatal development and aging as well as with prior experience with a stressor. However, surprisingly little is known with regard to how pubertal maturation and experience with stress interact to affect hypothalamic-pituitary-adrenal axis responsiveness. Because adolescence is a period of neurodevelopmental vulnerabilities and opportunities that may be especially sensitive to stress, it is imperative to more fully understand these interactions. Thus, we examined hormonal and neural responses in prepubertal (28 d of age) and adult (77 d of age) male rats after exposure to acute (30 min) or more chronic (30 min/d for 7 d) restraint stress. We report here that after acute stress, prepubertal males exhibited a significantly prolonged hormonal stress response (e.g. ACTH and total and free corticosterone) compared with adults. In contrast, after chronic stress, prepubertal males exhibited a higher response immediately after the stressor, but a faster return to baseline, compared with adults. Additionally, we demonstrate that this differential stress reactivity is associated with differential neuronal activation in the paraventricular nucleus of the hypothalamus, as measured by FOS immunohistochemistry. Using triple-label immunofluorescence histochemistry, we found that a larger proportion of CRH, but not arginine vasopressin, cells are activated in the arginine vasopressin in response to both acute and chronic stress in prepubertal animals compared with adults. These data indicate that experience-dependent plasticity of the hypothalamic-pituitary-adrenal neuroendocrine axis is significantly influenced by pubertal maturation.


Assuntos
Sistema Hipotálamo-Hipofisário/fisiologia , Sistema Hipófise-Suprarrenal/fisiologia , Maturidade Sexual/fisiologia , Estresse Psicológico/fisiopatologia , Hormônio Adrenocorticotrópico/metabolismo , Animais , Arginina Vasopressina/análise , Proteínas de Transporte/sangue , Corticosterona/metabolismo , Hormônio Liberador da Corticotropina/análise , Masculino , Plasticidade Neuronal , Proteínas Proto-Oncogênicas c-fos/análise , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA