Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Clin Invest ; 133(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37815874

RESUMO

Tissue-resident lymphocytes provide organ-adapted protection against invading pathogens. Whereas their biology has been examined in great detail in various infection models, their generation and functionality in response to vaccination have not been comprehensively analyzed in humans. We therefore studied SARS-CoV-2 mRNA vaccine-specific T cells in surgery specimens of kidney, liver, lung, bone marrow, and spleen compared with paired blood samples from largely virus-naive individuals. As opposed to lymphoid tissues, nonlymphoid organs harbored significantly elevated frequencies of spike-specific CD4+ T cells compared with blood showing hallmarks of tissue residency and an expanded memory pool. Organ-derived CD4+ T cells further exhibited increased polyfunctionality over those detected in blood. Single-cell RNA-Seq together with T cell receptor repertoire analysis indicated that the clonotype rather than organ origin is a major determinant of transcriptomic state in vaccine-specific CD4+ T cells. In summary, our data demonstrate that SARS-CoV-2 vaccination entails acquisition of tissue memory and residency features in organs distant from the inoculation site, thereby contributing to our understanding of how local tissue protection might be accomplished.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , SARS-CoV-2/genética , Memória Imunológica , COVID-19/prevenção & controle , Tecido Linfoide , Vacinação , RNA Mensageiro , Anticorpos Antivirais
2.
Clin Exp Med ; 23(7): 3689-3700, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37162650

RESUMO

Glycoprotein 90K, encoded by the interferon-stimulated gene LGALS3BP, displays broad antiviral activity. It reduces HIV-1 infectivity by interfering with Env maturation and virion incorporation, and increases survival of Influenza A virus-infected mice via antiviral innate immune signaling. Its antiviral potential in SARS-CoV-2 infection remains largely unknown. Here, we analyzed the expression of 90K/LGALS3BP in 44 hospitalized COVID-19 patients at multiple levels. We quantified 90K protein concentrations in serum and PBMCs as well as LGALS3BP mRNA levels. Complementary, we analyzed two single cell RNA-sequencing datasets for expression of LGALS3BP in respiratory specimens and PBMCs from COVID-19 patients. Finally, we analyzed the potential of 90K to interfere with SARS-CoV-2 infection of HEK293T/ACE2, Calu-3 and Caco-2 cells using authentic virus. 90K protein serum concentrations were significantly elevated in COVID-19 patients compared to uninfected sex- and age-matched controls. Furthermore, PBMC-associated concentrations of 90K protein were overall reduced by SARS-CoV-2 infection in vivo, suggesting enhanced secretion into the extracellular space. Mining of published PBMC scRNA-seq datasets uncovered monocyte-specific induction of LGALS3BP mRNA expression in COVID-19 patients. In functional assays, neither 90K overexpression in susceptible cell lines nor exogenous addition of purified 90K consistently inhibited SARS-CoV-2 infection. Our data suggests that 90K/LGALS3BP contributes to the global type I IFN response during SARS-CoV-2 infection in vivo without displaying detectable antiviral properties in vitro.


Assuntos
COVID-19 , Humanos , Animais , Camundongos , Células CACO-2 , Células HEK293 , Leucócitos Mononucleares , SARS-CoV-2 , Antivirais , RNA Mensageiro , Antígenos de Neoplasias , Biomarcadores Tumorais
3.
J Exp Clin Cancer Res ; 41(1): 312, 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273171

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) are considered to play a fundamental role in pancreatic ductal adenocarcinoma (PDAC) progression and chemoresistance. Patient-derived organoids have demonstrated great potential as tumor avatars for drug response prediction in PDAC, yet they disregard the influence of stromal components on chemosensitivity. METHODS: We established direct three-dimensional (3D) co-cultures of primary PDAC organoids and patient-matched CAFs to investigate the effect of the fibroblastic compartment on sensitivity to gemcitabine, 5-fluorouracil and paclitaxel treatments using an image-based drug assay. Single-cell RNA sequencing was performed for three organoid/CAF pairs in mono- and co-culture to uncover transcriptional changes induced by tumor-stroma interaction. RESULTS: Upon co-culture with CAFs, we observed increased proliferation and reduced chemotherapy-induced cell death of PDAC organoids. Single-cell RNA sequencing data evidenced induction of a pro-inflammatory phenotype in CAFs in co-cultures. Organoids showed increased expression of genes associated with epithelial-to-mesenchymal transition (EMT) in co-cultures and several potential receptor-ligand interactions related to EMT were identified, supporting a key role of CAF-driven induction of EMT in PDAC chemoresistance. CONCLUSIONS: Our results demonstrate the potential of personalized PDAC co-cultures models not only for drug response profiling but also for unraveling the molecular mechanisms involved in the chemoresistance-supporting role of the tumor stroma.


Assuntos
Antineoplásicos , Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Técnicas de Cocultura , Organoides/metabolismo , Resistencia a Medicamentos Antineoplásicos , Modelagem Computacional Específica para o Paciente , Ligantes , Células Estromais/metabolismo , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Paclitaxel/farmacologia , Fluoruracila/farmacologia , Antineoplásicos/farmacologia , Neoplasias Pancreáticas
4.
Nat Commun ; 13(1): 4484, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970849

RESUMO

Despite two years of intense global research activity, host genetic factors that predispose to a poorer prognosis of COVID-19 infection remain poorly understood. Here, we prioritise eight robust (e.g., ELF5) or suggestive but unreported (e.g., RAB2A) candidate protein mediators of COVID-19 outcomes by integrating results from the COVID-19 Host Genetics Initiative with population-based plasma proteomics using statistical colocalisation. The transcription factor ELF5 (ELF5) shows robust and directionally consistent associations across different outcome definitions, including a >4-fold higher risk (odds ratio: 4.88; 95%-CI: 2.47-9.63; p-value < 5.0 × 10-6) for severe COVID-19 per 1 s.d. higher genetically predicted plasma ELF5. We show that ELF5 is specifically expressed in epithelial cells of the respiratory system, such as secretory and alveolar type 2 cells, using single-cell RNA sequencing and immunohistochemistry. These cells are also likely targets of SARS-CoV-2 by colocalisation with key host factors, including ACE2 and TMPRSS2. In summary, large-scale human genetic studies together with gene expression at single-cell resolution highlight ELF5 as a risk gene for severe COVID-19, supporting a role of epithelial cells of the respiratory system in the adverse host response to SARS-CoV-2.


Assuntos
COVID-19 , Proteínas de Ligação a DNA , Fatores de Transcrição , Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Proteínas de Ligação a DNA/genética , Células Epiteliais/metabolismo , Humanos , Peptidil Dipeptidase A/metabolismo , Sistema Respiratório , SARS-CoV-2 , Fatores de Transcrição/genética
5.
Cancer Res ; 82(17): 3116-3129, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35819252

RESUMO

SIGNIFICANCE: Single-cell analysis of healthy lung tissue and lung cancer reveals distinct tumor cell populations, including cells with differential immune modulating capacity between smokers and never smokers, which could guide future therapeutic strategies.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Adenocarcinoma/patologia , Feminino , Humanos , Neoplasias Pulmonares/patologia , Fumantes , Fumar/efeitos adversos
6.
Nat Commun ; 12(1): 5826, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611171

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is projected to be the second leading cause of cancer mortality by 2030. Bulk transcriptomic analyses have distinguished 'classical' from 'basal-like' tumors with more aggressive clinical behavior. We derive PDAC organoids from 18 primary tumors and two matched liver metastases, and show that 'classical' and 'basal-like' cells coexist in individual organoids. By single-cell transcriptome analysis of PDAC organoids and primary PDAC, we identify distinct tumor cell states shared across patients, including a cycling progenitor cell state and a differentiated secretory state. Cell states are connected by a differentiation hierarchy, with 'classical' cells concentrated at the endpoint. In an imaging-based drug screen, expression of 'classical' subtype genes correlates with better drug response. Our results thus uncover a functional hierarchy of PDAC cell states linked to transcriptional tumor subtypes, and support the use of PDAC organoids as a clinically relevant model for in vitro studies of tumor heterogeneity.


Assuntos
Organoides/metabolismo , Análise de Célula Única/métodos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos
7.
Cancers (Basel) ; 13(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806447

RESUMO

Intra-tumor heterogeneity of tumor-initiating cell (TIC) activity drives colorectal cancer (CRC) progression and therapy resistance. Here, we used single-cell RNA-sequencing of patient-derived CRC models to decipher distinct cell subpopulations based on their transcriptional profiles. Cell type-specific expression modules of stem-like, transit amplifying-like, and differentiated CRC cells resemble differentiation states of normal intestinal epithelial cells. Strikingly, identified subpopulations differ in proliferative activity and metabolic state. In summary, we here show at single-cell resolution that transcriptional heterogeneity identifies functional states during TIC differentiation. Furthermore, identified expression signatures are linked to patient prognosis. Targeting transcriptional states associated to cancer cell differentiation might unravel novel vulnerabilities in human CRC.

8.
Gastroenterology ; 160(4): 1330-1344.e11, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33212097

RESUMO

BACKGROUND & AIMS: Molecular evidence of cellular heterogeneity in the human exocrine pancreas has not been yet established because of the local concentration and cascade of hydrolytic enzymes that can rapidly degrade cells and RNA upon pancreatic resection. We sought to better understand the heterogeneity and cellular composition of the pancreas in neonates and adults in healthy and diseased conditions using single-cell sequencing approaches. METHODS: We innovated single-nucleus RNA-sequencing protocols and profiled more than 120,000 cells from pancreata of adult and neonatal human donors. We validated the single-nucleus findings using RNA fluorescence in situ hybridization, in situ sequencing, and computational approaches. RESULTS: We created the first comprehensive atlas of human pancreas cells including epithelial and nonepithelial constituents, and uncovered 3 distinct acinar cell types, with possible implications for homeostatic and inflammatory processes of the pancreas. The comparison with neonatal single-nucleus sequencing data showed a different cellular composition of the endocrine tissue, highlighting the tissue dynamics occurring during development. By applying spatial cartography, involving cell proximity mapping through in situ sequencing, we found evidence of specific cell type neighborhoods, dynamic topographies in the endocrine and exocrine pancreas, and principles of morphologic organization of the organ. Furthermore, similar analyses in chronic pancreatitis biopsy samples showed the presence of acinar-REG+ cells, a reciprocal association between macrophages and activated stellate cells, and a new potential role of tuft cells in this disease. CONCLUSIONS: Our human pancreas cell atlas can be interrogated to understand pancreatic cell biology and provides a crucial reference set for comparisons with diseased tissue samples to map the cellular foundations of pancreatic diseases.


Assuntos
Núcleo Celular/metabolismo , Pâncreas Exócrino/citologia , Adolescente , Adulto , Fatores Etários , Idoso , Animais , Fracionamento Celular , Criança , Pré-Escolar , Feminino , Humanos , Hibridização in Situ Fluorescente , Lactente , Masculino , Pessoa de Meia-Idade , Modelos Animais , Pâncreas Exócrino/crescimento & desenvolvimento , Pâncreas Exócrino/metabolismo , RNA-Seq , Análise de Célula Única/métodos , Suínos , Adulto Jovem
9.
Nat Biotechnol ; 38(8): 970-979, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32591762

RESUMO

To investigate the immune response and mechanisms associated with severe coronavirus disease 2019 (COVID-19), we performed single-cell RNA sequencing on nasopharyngeal and bronchial samples from 19 clinically well-characterized patients with moderate or critical disease and from five healthy controls. We identified airway epithelial cell types and states vulnerable to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In patients with COVID-19, epithelial cells showed an average three-fold increase in expression of the SARS-CoV-2 entry receptor ACE2, which correlated with interferon signals by immune cells. Compared to moderate cases, critical cases exhibited stronger interactions between epithelial and immune cells, as indicated by ligand-receptor expression profiles, and activated immune cells, including inflammatory macrophages expressing CCL2, CCL3, CCL20, CXCL1, CXCL3, CXCL10, IL8, IL1B and TNF. The transcriptional differences in critical cases compared to moderate cases likely contribute to clinical observations of heightened inflammatory tissue damage, lung injury and respiratory failure. Our data suggest that pharmacologic inhibition of the CCR1 and/or CCR5 pathways might suppress immune hyperactivation in critical COVID-19.


Assuntos
Infecções por Coronavirus/patologia , Infecções por Coronavirus/fisiopatologia , Pneumonia Viral/patologia , Pneumonia Viral/fisiopatologia , Sistema Respiratório/patologia , Análise de Célula Única , Transcriptoma , Adulto , Idoso , Enzima de Conversão de Angiotensina 2 , Líquido da Lavagem Broncoalveolar/virologia , COVID-19 , Comunicação Celular , Diferenciação Celular , Infecções por Coronavirus/virologia , Células Epiteliais/patologia , Células Epiteliais/virologia , Feminino , Humanos , Sistema Imunitário/patologia , Inflamação/imunologia , Inflamação/patologia , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Nasofaringe/virologia , Pandemias , Peptidil Dipeptidase A/genética , Pneumonia Viral/virologia , Sistema Respiratório/imunologia , Sistema Respiratório/virologia , Índice de Gravidade de Doença
10.
Neuro Oncol ; 22(8): 1138-1149, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32297954

RESUMO

BACKGROUND: Glioblastoma (GBM) consists of devastating neoplasms with high invasive capacity, which have been difficult to study in vitro in a human-derived model system. Therapeutic progress is also limited by cellular heterogeneity within and between tumors, among other factors such as therapy resistance. To address these challenges, we present an experimental model using human cerebral organoids as a scaffold for patient-derived GBM cell invasion. METHODS: This study combined tissue clearing and confocal microscopy with single-cell RNA sequencing of GBM cells before and after co-culture with organoid cells. RESULTS: We show that tumor cells within organoids extend a network of long microtubes, recapitulating the in vivo behavior of GBM. Transcriptional changes implicated in the invasion process are coherent across patient samples, indicating that GBM cells reactively upregulate genes required for their dispersion. Potential interactions between GBM and organoid cells identified by an in silico receptor-ligand pairing screen suggest functional therapeutic targets. CONCLUSIONS: Taken together, our model has proven useful for studying GBM invasion and transcriptional heterogeneity in vitro, with applications for both pharmacological screens and patient-specific treatment selection on a time scale amenable to clinical practice.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Organoides , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Invasividade Neoplásica , Organoides/patologia , Transcriptoma , Células Tumorais Cultivadas
11.
EMBO J ; 39(10): e105114, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32246845

RESUMO

The SARS-CoV-2 pandemic affecting the human respiratory system severely challenges public health and urgently demands for increasing our understanding of COVID-19 pathogenesis, especially host factors facilitating virus infection and replication. SARS-CoV-2 was reported to enter cells via binding to ACE2, followed by its priming by TMPRSS2. Here, we investigate ACE2 and TMPRSS2 expression levels and their distribution across cell types in lung tissue (twelve donors, 39,778 cells) and in cells derived from subsegmental bronchial branches (four donors, 17,521 cells) by single nuclei and single cell RNA sequencing, respectively. While TMPRSS2 is strongly expressed in both tissues, in the subsegmental bronchial branches ACE2 is predominantly expressed in a transient secretory cell type. Interestingly, these transiently differentiating cells show an enrichment for pathways related to RHO GTPase function and viral processes suggesting increased vulnerability for SARS-CoV-2 infection. Our data provide a rich resource for future investigations of COVID-19 infection and pathogenesis.


Assuntos
Brônquios/citologia , Expressão Gênica , Pulmão/citologia , Peptidil Dipeptidase A/genética , Serina Endopeptidases/genética , Análise de Célula Única , Adulto , Envelhecimento , Enzima de Conversão de Angiotensina 2 , Brônquios/metabolismo , COVID-19 , Células Cultivadas , Doença Crônica/epidemiologia , Infecções por Coronavirus/genética , Células Epiteliais/metabolismo , Feminino , Perfilação da Expressão Gênica , Alemanha , Células Caliciformes/metabolismo , Humanos , Pulmão/metabolismo , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/genética , Padrões de Referência , Análise de Sequência de RNA , Caracteres Sexuais , Fumar , Bancos de Tecidos
12.
Water Res ; 173: 115467, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32006805

RESUMO

Hydraulic fracturing (HF), or "fracking," is the driving force behind the "shale gas revolution," completely transforming the United States energy industry over the last two decades. HF requires that 4-6 million gallons per well (15,000-23,000 m3/well) of water be pumped underground to stimulate the release of entrapped hydrocarbons from unconventional (i.e., shale or carbonate) formations. Estimated U.S. produced water volumes exceed 150 billion gallons/year across the industry from unconventional wells alone and are projected to grow for at least another two decades. Concerns over the environmental impact from accidental or incidental release of produced water from HF wells ("U-PW"), along with evolving regulatory and economic drivers, has spurred great interest in technological innovation to enhance U-PW recycling and reuse. In this review, we analyze U-PW quantity and composition based on the latest U.S. Geographical Survey data, identify key contamination metrics useful in tracking water quality improvement in the context of HF operations, and suggest "fit-for-purpose treatment" to enhance cost-effective regulatory compliance, water recovery/reuse, and resource valorization. Drawing on industrial practice and technoeconomic constraints, we further assess the challenges associated with U-PW treatment for onshore U.S. operations. Presented are opportunities for targeted end-uses of treated U-PW. We highlight emerging technologies that may enhance cost-effective U-PW management as HF activities grow and evolve in the coming decades.


Assuntos
Fraturamento Hidráulico , Campos de Petróleo e Gás , Objetivos , Gás Natural , Estados Unidos , Águas Residuárias , Poços de Água
13.
J Am Chem Soc ; 141(42): 16671-16684, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31557006

RESUMO

Identifying individual reactive intermediates within the "zoo" of organometallic species that form on catalytic surfaces during reactions is a long-standing challenge in heterogeneous catalysis. Here, we identify distinct reactive intermediates, all of which exist at low coverages, that lead to distinguishable reaction pathways during the hydrogenolysis of 2-methyltetrahydrofuran (MTHF) on Ni, Ni12P5, and Ni2P catalysts by combining advanced spectroscopic methods with quantum chemical calculations. Each of these reactive complexes cleaves specific C-O bonds, gives rise to unique products, and exhibits different apparent activation barriers for ring opening. The spectral features of the reactive intermediates are extracted by collecting in situ infrared spectra while sinusoidally modulating the H2 pressure during MTHF hydrogenolysis and applying phase-sensitive detection (PSD), which suppresses the features of inactive surface species. The combined spectra of all reactive species are deconvoluted using singular-value decomposition techniques that yield spectra and changes in surface coverage for each set of kinetically differentiable species. These deconvoluted spectra are consistent with predicted spectral features for the reactive surface intermediates implicated by detailed kinetic measurements and DFT calculations. Notably, these methods give direct evidence for several anticipated differences in the coordination and composition of reactive MTHF-derived species. The compositions of the most abundant reactive intermediate (MARI) on Ni, Ni12P5, and Ni2P nanoparticles during the C-O bond rupture of MTHF are identical; however, MARI changes orientation from Ni3(µ3-C5H10O) to Ni3(η5-C5H10O) (i.e., lies more parallel with the catalyst surface) with increasing phosphorus content. The shift in binding configuration with phosphorus content suggests that the decrease in steric hindrance to rupture the 3C-O bond is the fundamental cause of increased selectivity toward 3C-O bond rupture. Previous kinetic measurements and DFT calculations indicate that C-O bond rupture occurs on Ni ensembles on Ni, Ni12P5, and Ni2P catalysts; however, the addition of more electronegative phosphorus atoms that withdraw a small charge from Ni ensembles results in differences in the binding configuration, activation enthalpy, and selectivity. The results from this in situ spectroscopic methodology support previous proposals that the manipulation of the electronic structure of metal ensembles by the introduction of phosphorus provides strategies for designing catalysts for the selective cleavage of hindered C-X bonds and demonstrate the utility of this approach in identifying individual reactive species within the zoo.

14.
Sci Rep ; 9(1): 12367, 2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31451731

RESUMO

Patient-derived 3D cell culture systems are currently advancing cancer research since they potentiate the molecular analysis of tissue-like properties and drug response under well-defined conditions. However, our understanding of the relationship between the heterogeneity of morphological phenotypes and the underlying transcriptome is still limited. To address this issue, we here introduce "pheno-seq" to directly link visual features of 3D cell culture systems with profiling their transcriptome. As prototypic applications breast and colorectal cancer (CRC) spheroids were analyzed by pheno-seq. We identified characteristic gene expression signatures of epithelial-to-mesenchymal transition that are associated with invasive growth behavior of clonal breast cancer spheroids. Furthermore, we linked long-term proliferative capacity in a patient-derived model of CRC to a lowly abundant PROX1-positive cancer stem cell subtype. We anticipate that the ability to integrate transcriptome analysis and morphological patho-phenotypes of cancer cells will provide novel insight on the molecular origins of intratumor heterogeneity.


Assuntos
Técnicas de Cultura de Células/métodos , Regulação Neoplásica da Expressão Gênica , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Linhagem da Célula/genética , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Feminino , Genes Neoplásicos , Humanos , Células-Tronco Neoplásicas/patologia , Fenótipo , Análise de Célula Única
15.
Mol Syst Biol ; 14(8): e8238, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-30104419

RESUMO

Three-dimensional protein localization intricately determines the functional coordination of cellular processes. The complex spatial context of protein landscape has been assessed by multiplexed immunofluorescent staining or mass spectrometry, applied to 2D cell culture with limited physiological relevance or tissue sections. Here, we present 3D SPECS, an automated technology for 3D Spatial characterization of Protein Expression Changes by microscopic Screening. This workflow comprises iterative antibody staining, high-content 3D imaging, and machine learning for detection of mitoses. This is followed by mapping of spatial protein localization into a spherical, cellular coordinate system, a basis for model-based prediction of spatially resolved affinities of proteins. As a proof-of-concept, we mapped twelve epitopes in 3D-cultured spheroids and investigated the network effects of twelve mitotic cancer drugs. Our approach reveals novel insights into spindle fragility and chromatin stress, and predicts unknown interactions between proteins in specific mitotic pathways. 3D SPECS's ability to map potential drug targets by multiplexed immunofluorescence in 3D cell culture combined with our automated high-content assay will inspire future functional protein expression and drug assays.


Assuntos
Ensaios de Seleção de Medicamentos Antitumorais , Epitopos/genética , Mitose/genética , Proteínas/genética , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos/métodos , Epitopos/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Proteínas/efeitos dos fármacos
16.
Mol Syst Biol ; 13(11): 955, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-29180611

RESUMO

Cancer drug screening in patient-derived cells holds great promise for personalized oncology and drug discovery but lacks standardization. Whether cells are cultured as conventional monolayer or advanced, matrix-dependent organoid cultures influences drug effects and thereby drug selection and clinical success. To precisely compare drug profiles in differently cultured primary cells, we developed DeathPro, an automated microscopy-based assay to resolve drug-induced cell death and proliferation inhibition. Using DeathPro, we screened cells from ovarian cancer patients in monolayer or organoid culture with clinically relevant drugs. Drug-induced growth arrest and efficacy of cytostatic drugs differed between the two culture systems. Interestingly, drug effects in organoids were more diverse and had lower therapeutic potential. Genomic analysis revealed novel links between drug sensitivity and DNA repair deficiency in organoids that were undetectable in monolayers. Thus, our results highlight the dependency of cytostatic drugs and pharmacogenomic associations on culture systems, and guide culture selection for drug tests.


Assuntos
Antineoplásicos/farmacologia , Cistadenocarcinoma Seroso/tratamento farmacológico , Ensaios de Seleção de Medicamentos Antitumorais/normas , Genoma , Organoides/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Farmacogenética/métodos , Animais , Automação Laboratorial , Bioensaio/normas , Morte Celular , Linhagem Celular Tumoral , Proliferação de Células , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Dano ao DNA , Reparo do DNA , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Organoides/metabolismo , Organoides/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Medicina de Precisão , Cultura Primária de Células , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Am J Med Sci ; 354(3): 223-229, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28918826

RESUMO

The Islamic culture flourished between the 9th and 13th centuries. Scholars from this era made significant contributions in mathematics, science and medicine. Caliphs and physicians built hospitals that provided universal care and the foundation for medical education. Physician-scientists made significant advances in medical care, surgery and pharmacology. Notable authorities include al-Razi (865-925 CE) who wrote the Kitab al-Hawi fi al-tibb (The Comprehensive Book on Medicine), a 23-volume textbook that provided the main medical curriculum for European schools into the 14th century. Ibn Sina (980-1037 CE), an extraordinary Persian polymath, wrote al Qanun fi al-Tibb (The Canon of Medicine), an encyclopedic treatment of medicine that combined his own observations with medical information from Galen and philosophy from Aristotle. Mansur (1380-1422 CE) wrote the first color illustrated book on anatomy. Other important physicians compiled information on the use of medication from plants, advanced surgical techniques, including cataract extraction and studied physiology, including the pulmonary circulation. These books and ideas provided the basis for medical care in Europe during its recovery from the Dark Ages.


Assuntos
Islamismo/história , Medicina Arábica/história , História Medieval , Hospitais/história , Faculdades de Medicina/história , Ciência/história
18.
Cell ; 154(6): 1390-400, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-24034256

RESUMO

Dysfunction of ENaC, the epithelial sodium channel that regulates salt and water reabsorption in epithelia, causes several human diseases, including cystic fibrosis (CF). To develop a global understanding of molecular regulators of ENaC traffic/function and to identify of candidate CF drug targets, we performed a large-scale screen combining high-content live-cell microscopy and siRNAs in human airway epithelial cells. Screening over 6,000 genes identified over 1,500 candidates, evenly divided between channel inhibitors and activators. Genes in the phosphatidylinositol pathway were enriched on the primary candidate list, and these, along with other ENaC activators, were examined further with secondary siRNA validation. Subsequent detailed investigation revealed ciliary neurotrophic factor receptor (CNTFR) as an ENaC modulator and showed that inhibition of (diacylglycerol kinase, iota) DGKι, a protein involved in PiP2 metabolism, downgrades ENaC activity, leading to normalization of both Na+ and fluid absorption in CF airways to non-CF levels in primary human lung cells from CF patients.


Assuntos
Fibrose Cística/tratamento farmacológico , Terapia de Alvo Molecular , Linhagem Celular , Células Cultivadas , Canais Epiteliais de Sódio/metabolismo , Humanos , Pulmão/citologia , Pulmão/metabolismo , RNA Interferente Pequeno
19.
Methods Mol Biol ; 742: 249-64, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21547737

RESUMO

As several genomes have been sequenced, post-genomic approaches like transcriptomics and proteomics, identifying gene products differentially expressed in association with a given pathology, have held promise both of understanding the pathways associated with the respective disease and as a fast track to therapy. Notwithstanding, these approaches cannot distinguish genes and proteins with mere secondary pathological association from those primarily involved in the basic defect(s). New global strategies and tools identifying gene products responsible for the basic cellular defect(s) in CF pathophysiology currently being performed are presented here. These include high-content screens to determine proteins affecting function and trafficking of CFTR and ENaC.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística/metabolismo , Canais Epiteliais de Sódio , Genômica/métodos , Linhagem Celular Tumoral , Fibrose Cística/genética , Fibrose Cística/fisiopatologia , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Bloqueadores do Canal de Sódio Epitelial , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Fluorescência , Inativação Gênica , Ensaios de Triagem em Larga Escala , Humanos , Microscopia Confocal , Mutação , Plasmídeos/metabolismo , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Deleção de Sequência , Espectrometria de Fluorescência , Transfecção
20.
Genome Res ; 14(6): 1130-6, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15173118

RESUMO

Light microscopic analysis of cell morphology provides a high-content readout of cell function and protein localization. Cell arrays and microwell transfection assays on cultured cells have made cell phenotype analysis accessible to high-throughput experiments. Both the localization of each protein in the proteome and the effect of RNAi knock-down of individual genes on cell morphology can be assayed by manual inspection of microscopic images. However, the use of morphological readouts for functional genomics requires fast and automatic identification of complex cellular phenotypes. Here, we present a fully automated platform for high-throughput cell phenotype screening combining human live cell arrays, screening microscopy, and machine-learning-based classification methods. Efficiency of this platform is demonstrated by classification of eleven subcellular patterns marked by GFP-tagged proteins. Our classification method can be adapted to virtually any microscopic assay based on cell morphology, opening a wide range of applications including large-scale RNAi screening in human cells.


Assuntos
Neoplasias da Mama/classificação , Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Artefatos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde , Humanos , Espaço Intracelular/classificação , Proteínas Luminescentes/genética , Fenótipo , Projetos de Pesquisa/normas , Transfecção/instrumentação , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA