Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Transl Radiat Oncol ; 40: 100624, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37090848

RESUMO

Background: Treatment of head and neck cancer on linear accelerators with on-board magnetic resonance imaging (MR-linac) might be beneficial to reduce side effects and increase accuracy. For many head and neck cancer patients, dose coverage of the often superficially located planning target volumes (PTVs) is required. This study examines the impact of the electron return effect (ERE) on the surface dose in MR-guided radiotherapy (MRgRT) compared to conventional radiotherapy. Materials and methods: For this bicentric dosimetric study, 14 cases of laryngeal carcinomas with PTVs reaching up to the skin surface were included. For each patient, five different plans were compared, two VMAT plans (with and without a 5 mm bolus) and three IMRT MRgRT plans (0.35 T, 1.5 T and 0 T, each without bolus). Dose distributions were also validated with film measurements. Results: A similar coverage on the most superficial 3-5 mm of the PTV was achieved in the VMAT plans with bolus and the MRgRT plans for both 0.35 T and 1.5 T. However, coverage on this region was usually not achieved for VMAT without bolus and the 0 T plans. The film measurements on phantoms confirmed the results with the relative error never exceeding the calculated differences between the plans. Conclusion: The present study could demonstrate that the ERE for both commercially available MR-linac variants provides sufficient coverage of the superficial tissue layers in MRgRT-plans for laryngeal carcinoma.

2.
J Appl Clin Med Phys ; 23(8): e13732, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35856911

RESUMO

BACKGROUND: RaySearch (AB, Stockholm) has released a module for CyberKnife (CK) planning within its RayStation (RS) treatment planning system (TPS). PURPOSE: To create and validate beam models of fixed, Iris, and multileaf collimators (MLC) of the CK M6 for Monte Carlo (MC) and collapsed cone (CC) algorithms in the RS TPS. METHODS: Measurements needed for the creation of the beam models were performed in a water tank with a stereotactic PTW 60018 diode. Both CC and MC models were optimized in RS by minimizing the differences between the measured and computed profiles and percentage depth doses. The models were then validated by comparing dose from the plans created in RS with both single and multiple beams in different phantom conditions with the corresponding measured dose. Irregular field shapes and off-axis beams were also tested for the MLC. Validation measurements were performed using an A1SL ionization chamber, EBT3 Gafchromic films, and a PTW 1000 SRS detector. Finally, patient-specific QAs with gamma criteria of 3%/1 mm were performed for each model. RESULTS: The models were created in a straightforward manner with efficient tools available in RS. The differences between computed and measured doses were within ±1% for most of the configurations tested and reached a maximum of 3.2% for measurements at a depth of 19.5-cm. With respect to all collimators and algorithms, the maximum averaged dose difference was 0.8% when considering absolute dose measurements on the central axis. The patient-specific QAs led to a mean result of 98% of points fulfilling gamma criteria. CONCLUSIONS: We created both CC and MC models for fixed, Iris, and MLC collimators in RS. The dose differences for all collimators and algorithms were within ±1%, except for depths larger than 9 cm. This allowed us to validate both models for clinical use.


Assuntos
Algoritmos , Planejamento da Radioterapia Assistida por Computador , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
3.
Med Phys ; 47(5): 2309-2316, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32078167

RESUMO

PURPOSE: The purpose of this study was to calculate dose distributions from CyberKnife image-guided radiation therapy (IGRT) for brain, H&N, lung, and pelvis treatment regions and use them to extract the corresponding effective dose and estimate-related risk. METHODS: We developed a CyberKnife IGRT kV beam model in a standard treatment planning system and validated it against measurements in heterogeneous phantoms. Five brain, five head and neck, five thorax, and 10 (five male and five female) pelvis patient computed tomographies (CTs) were contoured. The dose distribution resulting from different CyberKnife IGRT protocols was calculated. From them, the effective dose was calculated according to ICRP publication Nr 103, using the average dose to contoured organs. The corresponding risk factors were calculated. Entrance surface dose (ESD) was also calculated and compared with existing data. RESULTS: The maximum effective dose produced by CyberKnife IGRT protocols was 0.8 mSv (brain), 1.9 mSv (H&N), 20.2 (pelvis), and 42.4 mSv (thorax) per fraction for a risk estimate of 0.004% (brain), 0.01% (H&N), 0.1% (pelvis), and 0.2% (thorax). Calculated ESD were compatible with existing data. CONCLUSIONS: Dose calculation models for CyberKnife IGRT kV beams were implemented in a clinical treatment planning system and validated in water and heterogeneous phantoms. We determined the effective dose and the related risk estimate resulting from CyberKnife IGRT protocols for brain, head and neck, thorax, and pelvis cases. The effective doses calculated for CyberKnife IGRT protocols were similar to those obtained for cone beam CT protocols on conventional C-arm linear accelerators, except for extreme irradiation conditions for thorax cases (140 kV X-ray tube tension).


Assuntos
Doses de Radiação , Radioterapia Guiada por Imagem/métodos , Humanos , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem/efeitos adversos
4.
Z Med Phys ; 28(4): 276-285, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29426589

RESUMO

PURPOSE: Image guided radiotherapy (IGRT) improves patient positioning for treatment delivery at the cost of an additional dose. This work aimed to calculate the effective dose (as an indicator of dose) for head & neck (H&N) and breast IGRT treatments by implementing dose calculation models to determine the dose distributions. METHODS: The kV dose-models were created for the IGRT systems of Elekta Synergy (XVI) and Varian Clinac (OBI) linear accelerators within Philips Pinnacle TPS. Profiles and depth dose curves were measured in water. The models were validated in a CIRS thorax phantom. The IGRT dose distributions for five H&N and five breast patients were calculated. The effective dose was determined from the dose distributions following ICRP 103 recommendations. Moreover, time-saving approximations were studied in order to propose an alternative way of segmenting the tissues for a clinical implementation of the method. RESULTS AND CONCLUSION: The effective dose specifically associated with IGRT varied from 1 to 10mSv depending on the protocol. The kV dose-model allowed us to calculate the dose distributions from IGRT for different configurations and patients, and to determine effective dose for IGRT protocols. The clinical implementation of the method was found to reduce time and to introduce a small enough increase of uncertainty in the results to be clinically usable.


Assuntos
Neoplasias da Mama/radioterapia , Neoplasias de Cabeça e Pescoço/radioterapia , Modelos Teóricos , Dosagem Radioterapêutica , Radioterapia Guiada por Imagem , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA