Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731962

RESUMO

ADORA2A (adenosine A2a receptor) and ADORA2B propagate immunoregulatory signals, including restricting both innate and adaptive immunity, though recent data also suggest a tumor suppressor effect in certain settings. We evaluated the RNA expression from 514 tumors in a clinical-grade laboratory; 489 patients with advanced/metastatic disease had clinical outcome correlates. Transcript expression was standardized to internal housekeeping genes and ranked (0-100 scale) relative to 735 specimens from 35 different cancer types. Transcript abundance rank values were defined as "low/moderate" (0-74) or "high" (75-100) percentile RNA expression ranks. Overall, 20.8% of tumors had high ADORA2A (≥75 percentile RNA rank). The greatest proportion of high ADORA2A expressors was found in neuroendocrine and breast cancers and sarcomas, whereas the lowest was found in colorectal and ovarian cancers, albeit with patient-to-patient variability. In multivariable logistic regression analysis, there was a significant positive correlation between high ADORA2A RNA expression and a high expression of the immune checkpoint-related molecules PD-1 (p = 0.015), VISTA (p ≤ 0.001), CD38 (p = 0.031), and CD39 (p ≤ 0.001). In 217 immunotherapy-treated patients, high ADORA2A did not correlate significantly with progression-free (p = 0.51) or overall survival (OS) (p = 0.09) from the initiation of the checkpoint blockade. However, high versus not-high ADORA2A transcript expression correlated with longer OS from the time of advanced/metastatic disease (N = 489 patients; (HR 0.69 (95% CI 0.51-0.95) (p = 0.02)). Therefore, high ADORA2A transcript levels may be a favorable prognostic factor, unrelated to immunotherapy. Importantly, ascertaining co-expression patterns of ADORA2A with PD-1 and VISTA in individual tumors as a basis for the precision co-targeting of ADORA2A and these other checkpoint-related molecules warrants investigation in clinical trials.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias , Receptor A2A de Adenosina , Transcriptoma , Humanos , Neoplasias/genética , Neoplasias/patologia , Feminino , Masculino , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética , Prognóstico , Idoso , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Adulto , Apirase
2.
J Pers Med ; 14(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38793063

RESUMO

Background: KEYNOTE-522 resulted in FDA approval of the immune checkpoint inhibitor pembrolizumab in combination with neoadjuvant chemotherapy for patients with early-stage, high-risk, triple-negative breast cancer (TNBC). Unfortunately, pembrolizumab is associated with several immune-related adverse events (irAEs). We aimed to identify potential tumor microenvironment (TME) biomarkers which could predict patients who may attain pathological complete response (pCR) with chemotherapy alone and be spared the use of anti-PD-1 immunotherapy. Methods: Comprehensive immune profiling, including RNA-seq gene expression assessment of 395 immune genes, was performed on matched FFPE tumor samples from 22 stage I-III TNBC patients (14 patients treated with neoadjuvant chemotherapy alone (NAC) and 8 treated with neoadjuvant chemotherapy combined with pembrolizumab (NAC+I)). Results: Differential gene expression analysis revealed that in the NAC group, IL12B and IL13 were both significantly associated with pCR. In the NAC+I group, LCK and TP63 were significantly associated with pCR. Patients in both treatment groups exhibiting pCR tended to have greater tumor inflammation than non-pCR patients. In the NAC+I group, patients with pCR tended to have greater cell proliferation and higher PD-L1 expression, while in the NAC group, patients with pCR tended to have lower cancer testis antigen expression. Additionally, the NAC+I group trended toward a lower relative dose intensity averaged across all chemotherapy drugs, suggesting that more dose reductions or treatment delays occurred in the NAC+I group than the NAC group. Conclusions: A comprehensive understanding of immunologic factors could potentially predict pCR to chemotherapy alone, enabling the avoidance of the unnecessary treatment of these patients with checkpoint inhibitors.

3.
Am J Cancer Res ; 14(4): 1634-1648, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726288

RESUMO

Glucocorticoid-induced tumor necrosis factor related protein (GITR) is a transmembrane protein expressed mostly on CD25+CD4+ regulatory T-cells (Tregs) and upregulated on all T-cells upon activation. It is a T-cell co-stimulatory receptor and has demonstrated promising anti-tumor activity in pre-clinical studies. To date, however, the efficacy of GITR agonism has been discouraging in clinical trials. This study explores GITR and GITR ligand (GITR-L) ribonucleic acid (RNA) expression in solid tumors in an attempt to delineate causes for variable responses to GITR agonists. RNA expression levels of 514 patients with a variety of cancer types were normalized to internal housekeeping gene profiles and ranked as percentiles. 99/514 patients (19.3%) had high GITR expression (defined as ≥ 75th percentile). Breast and lung cancer had the highest proportion of patients with high GITR expression (39% and 35%, respectively). The expression of concomitant high GITR and low-moderate GITR-L expression (defined as <75th percentile) was present in 31% and 30% of patients with breast and lung cancer respectively. High GITR expression also showed a significant independent association with high RNA expression of other immune modulator proteins, namely, PD-L1 immunohistochemistry (IHC) ≥1 (odds ratio (OR) 2.15, P=0.008), CTLA4 (OR=2.17, P=0.05) and OX40 high RNA expression (OR=2.64, P=0.001). Overall, these results suggest that breast and lung cancer have a high proportion of patients with a GITR and GITR-L RNA expression profile that merits further investigation in GITR agonism studies. The association of high GITR expression with high CTLA4 and OX40 RNA expression, as well as positive PD-L1 IHC, provides a rationale for a combination approach targeting these specific immune modulator proteins in patients whose tumors show such co-expression.

4.
iScience ; 27(4): 109632, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38632994

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1), which catabolizes tryptophan, is a potential target to unlock the immunosuppressive tumor microenvironment. Correlations between IDO1 and immune checkpoint inhibitor (ICI) efficacy remain unclear. Herein, we investigated IDO1 transcript expression across cancers and clinical outcome correlations. High IDO1 transcripts were more frequent in uterine (54.2%) and ovarian cancer (37.2%) but varied between and within malignancies. High IDO1 RNA expression was associated with high expression of PD-L1 (immune checkpoint ligand), CXCL10 (an effector T cell recruitment chemokine), and STAT1 (a component of the JAK-STAT pathway) (all multivariable p < 0.05). PIK3CA and CTCF alterations were more frequent in the high IDO1 group. High IDO1 expression was an independent predictor of progression-free survival (adjusted HR = 0.44, 95% CI 0.20-0.99, p = 0.049) and overall survival (adjusted HR = 0.31, 95% CI 0.11-0.87, p = 0.026) after front-line ICIs. IDO1 expression warrants further exploration as a predictive biomarker for immunotherapy. Moreover, co-expressed immunoregulatory molecules merit exploration for co-targeting.

5.
Am J Cancer Res ; 14(1): 368-377, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38323282

RESUMO

Immune checkpoint inhibitors have revolutionized the treatment landscape for patients with cancer. Multi-omics, including next-generation DNA and RNA sequencing, have enabled the identification of exploitable targets and the evaluation of immune mediator expression. There is one FDA-approved LAG-3 inhibitor and multiple in clinical trials for numerous cancers. We analyzed LAG-3 transcriptomic expression among 514 patients with diverse cancers, including 489 patients with clinical annotation for their advanced malignancies. Transcriptomic LAG-3 expression was highly variable between histologies/cancer types and within the same histology/cancer type. LAG-3 RNA levels correlated linearly, albeit weakly, with high RNA levels of other checkpoints, including PD-L1 (Pearson's R2 = 0.21 (P < 0.001)), PD-1 (R2 = 0.24 (P < 0.001)) and CTLA-4 (R2 = 0.19 (P < 0.001)); when examined for Spearman correlation, significance did not change. LAG-3 expression (dichotomized at ≥ 75th (high) versus < 75th (moderate/low) RNA percentile level) was not a prognostic factor for overall survival (OS) in 272 immunotherapy-naïve patients with advanced/metastatic disease (Kaplan Meier analysis; P = 0.54). High LAG-3 levels correlated with longer OS after anti-PD-1/PD-L1-based checkpoint blockade (univariate (P = 0.003), but not multivariate analysis (hazard ratio, 95% confidence interval = 0.80 (0.46-1.40) (P = 0.44))); correlation with longer progression-free survival showed a weak univariate trend (P = 0.13). Taken together, these results suggest that high LAG-3 levels in and of themselves do not predict resistance to anti-PD-1/PD-L1 checkpoint blockade. Even so, since LAG-3 is often co-expressed with PD-1, PD-L1 and/or CTLA-4, selecting patients for combinations of checkpoint blockade based on immunomic co-expression patterns is a strategy that merits exploration.

6.
J Transl Med ; 22(1): 141, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326843

RESUMO

BACKGROUND: Cancer-testis antigens (CTAs) are tumor antigens that are normally expressed in the testes but are aberrantly expressed in several cancers. CTA overexpression drives the metastasis and progression of lung cancer, and is associated with poor prognosis. To improve lung cancer diagnosis, prognostic prediction, and drug discovery, robust CTA identification and quantitation is needed. In this study, we examined and quantified the co-expression of CTAs in lung cancer to derive cancer testis antigen burden (CTAB), a novel biomarker of immunotherapy response. METHODS: Formalin fixed paraffin embedded (FFPE) tumor samples in discovery cohort (n = 5250) and immunotherapy and combination therapy treated non-small cell lung cancer (NSCLC) retrospective (n = 250) cohorts were tested by comprehensive genomic and immune profiling (CGIP), including tumor mutational burden (TMB) and the mRNA expression of 17 CTAs. PD-L1 expression was evaluated by IHC. CTA expression was summed to derive the CTAB score. The median CTAB score for the discovery cohort of 170 was applied to the retrospective cohort as cutoff for CTAB "high" and "low". Biomarker and gene expression correlation was measured by Spearman correlation. Kaplan-Meier survival analyses were used to detect overall survival (OS) differences, and objective response rate (ORR) based on RECIST criteria was compared using Fisher's exact test. RESULTS: The CTAs were highly co-expressed (p < 0.05) in the discovery cohort. There was no correlation between CTAB and PD-L1 expression (R = 0.011, p = 0.45) but some correlation with TMB (R = 0.11, p = 9.2 × 10-14). Kaplan-Meier survival analysis of the immunotherapy-treated NSCLC cohort revealed better OS for the pembrolizumab monotherapy treated patients with high CTAB (p = 0.027). The combination group demonstrated improved OS compared to pembrolizumab monotherapy group (p = 0.04). The pembrolizumab monotherapy patients with high CTAB had a greater ORR than the combination therapy group (p = 0.02). CONCLUSIONS: CTA co-expression can be reliably measured using CGIP in solid tumors. As a biomarker, CTAB appears to be independent from PD-L1 expression, suggesting that CTAB represents aspects of tumor immunogenicity not measured by current standard of care testing. Improved OS and ORR for high CTAB NSCLC patients treated with pembrolizumab monotherapy suggests a unique underlying aspect of immune response to these tumor antigens that needs further investigation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Masculino , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Antígeno B7-H1/metabolismo , Cetrimônio/uso terapêutico , Estudos Retrospectivos , Testículo/química , Testículo/metabolismo , Testículo/patologia , Antígenos de Neoplasias , Biomarcadores Tumorais/genética
7.
Ther Adv Med Oncol ; 16: 17588359231220510, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38188465

RESUMO

Background: CTLA-4 impedes the immune system's antitumor response. There are two Food and Drug Administration-approved anti-CTLA-4 agents - ipilimumab and tremelimumab - both used together with anti-PD-1/PD-L1 agents. Objective: To assess the prognostic implications and immunologic correlates of high CTLA-4 in tumors of patients on immunotherapy and those on non-immunotherapy treatments. Design/methods: We evaluated RNA expression levels in a clinical-grade laboratory and clinical correlates of CTLA-4 and other immune checkpoints in 514 tumors, including 489 patients with advanced/metastatic cancers and full outcome annotation. A reference population (735 tumors; 35 histologies) was used to normalize and rank transcript abundance (0-100 percentile) to internal housekeeping gene profiles. Results: The most common tumor types were colorectal (140/514, 27%), pancreatic (55/514, 11%), breast (49/514, 10%), and ovarian cancers (43/514, 8%). Overall, 87 of 514 tumors (16.9%) had high CTLA-4 transcript expression (⩾75th percentile rank). Cancers with the largest proportion of high CTLA-4 transcripts were cervical cancer (80% of patients), small intestine cancer (33.3%), and melanoma (33.3%). High CTLA-4 RNA independently/significantly correlated with high PD-1, PD- L2, and LAG3 RNA levels (and with high PD-L1 in univariate analysis). High CTLA-4 RNA expression was not correlated with survival from the time of metastatic disease [N = 272 patients who never received immune checkpoint inhibitors (ICIs)]. However, in 217 patients treated with ICIs (mostly anti-PD-1/anti-PD- L1), progression-free survival (PFS) and overall survival (OS) were significantly longer among patients with high versus non-high CTLA-4 expression [hazard ratio, 95% confidence interval: 0.6 (0.4-0.9) p = 0.008; and 0.5 (0.3-0.8) p = 0.002, respectively]; results were unchanged when 18 patients who received anti-CTLA-4 were omitted. Patients whose tumors had high CTLA-4 and high PD-L1 did best; those with high PD-L1 but non-high CTLA-4 and/or other expression patterns had poorer outcomes for PFS (p = 0.004) and OS (p = 0.009) after immunotherapy. Conclusion: High CTLA-4, especially when combined with high PD-L1 transcript expression, was a significant positive predictive biomarker for better outcomes (PFS and OS) in patients on immunotherapy.


High CTLA-4 expression and immunotherapy outcome High CTLA-4 expression was not a prognostic factor for survival in patients not receiving ICIs but was a significant positive predictive biomarker for better outcome (PFS and OS) in patients on immunotherapy, perhaps because it correlated with expression of other checkpoints such as PD-1 and PD-L2.

8.
Cancer Med ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38132831

RESUMO

BACKGROUND: T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), an immune checkpoint receptor, dampens immune function. TIM-3 antagonists have entered the clinic. METHODS: We analyzed TIM-3 transcriptomic expression in 514 diverse cancers. Transcript abundance was normalized to internal housekeeping genes and ranked (0-100 percentile) to a reference population (735 tumors; 35 histologies [high≥75 percentile rank]). Ninety tumors (17.5%) demonstrated high TIM-3 expression. RESULTS: TIM-3 expression varied between and within tumor types. However, high TIM-3 expression was more common in pancreatic cancer (20/55 tumors, 36.4%; odds ratio, 95% confidence interval (pancreatic vs. other tumors) = 3.176 (1.733-5.818; p < 0.001, multivariate]). High TIM-3 also significantly and independently correlated with high PD-L1 (p = 0.014) and high CTLA-4 (p < 0.001) transcriptomic expression (multivariate). CONCLUSIONS: These observations indicate that TIM-3 RNA expression is heterogeneous, but more common in pancreatic cancer and in tumors exploiting PD-L1 and CTLA-4 checkpoints. Clinical trials with patient selection for matched immune-targeted combinations may be warranted.

9.
Cancers (Basel) ; 15(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37835483

RESUMO

Programmed cell death ligand (PD-L1) expression by immunohistochemistry (IHC) lacks sensitivity for pembrolizumab immunotherapy selection in non-small cell lung cancer (NSCLC), particularly for tumors with low expression. We retrospectively evaluated transcriptomic PD-L1 by mRNA next-generation sequencing (RNA-seq). In an unselected NSCLC patient cohort (n = 3168) tested during standard care (2017-2021), PD-L1 IHC and RNA-seq demonstrated moderate concordance, with 80% agreement overall. Most discordant cases were either low or negative for PD-L1 expression by IHC but high by RNA-seq. RNA-seq accurately discriminated PD-L1 IHC high from low tumors by receiver operator curve (ROC) analysis but could not distinguish PD-L1 IHC low from negative tumors. In a separate pembrolizumab monotherapy cohort (n = 102), NSCLC tumors classified as PD-L1 high versus not high by RNA-seq had significantly improved response, progression-free survival, and overall survival as an individual measure and in combination with IHC high or low status. PD-L1 IHC status (high or low) trended toward but had no significant associations with improved outcomes. Conventional PD-L1 IHC testing has inherent limitations, making it an imperfect reference standard for evaluating novel testing technologies. RNA-seq offers an objective PD-L1 measure that could represent a complementary method to IHC to improve NSCLC patient selection for immunotherapy.

10.
Mol Cancer Ther ; 22(11): 1352-1362, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619986

RESUMO

Our objective was to characterize cancer-immunity marker expression in gynecologic cancers and compare immune landscapes between gynecologic tumor subtypes and with nongynecologic solid tumors. RNA expression levels of 51 cancer-immunity markers were analyzed in patients with gynecologic cancers versus nongynecologic cancers, and normalized to a reference population of 735 control cancers, ranked from 0 to 100, and categorized as low (0-24), moderate (25-74), or high (75-100) percentile rank. Of the 72 patients studied, 43 (60%) had ovarian, 24 (33%) uterine, and 5 (7%) cervical cancer. No two immune profiles were identical according to expression rank (0-100) or rank level (low, moderate, or high). Patients with cervical cancer had significantly higher expression level ranks of immune activating, proinflammatory, tumor-infiltrating lymphocyte markers, and checkpoints than patients with uterine or ovarian cancer (P < 0.001 for all comparisons). However, there were no significant differences in immune marker expression between uterine and ovarian cancers. Tumors with PD-L1 tumor proportional score (TPS) ≥1% versus 0% had significantly higher expression levels of proinflammatory markers (58 vs. 49%, P = 0.0004). Compared to patients with nongynecologic cancers, more patients with gynecologic cancers express high levels of IDO-1 (44 vs. 13%, P < 0.001), LAG3 (35 vs. 21%, P = 0.008), and IL10 (31 vs. 15%, P = 0.002.) Patients with gynecologic cancers have complex and heterogeneous immune landscapes that are distinct from patient to patient and from other solid tumors. High levels of IDO1 and LAG3 suggest that clinical trials with IDO1 inhibitors or LAG3 inhibitors, respectively, may be warranted in gynecologic cancers.


Assuntos
Neoplasias dos Genitais Femininos , Neoplasias Ovarianas , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias dos Genitais Femininos/genética , Neoplasias dos Genitais Femininos/terapia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/patologia , Imunoterapia , Biomarcadores , RNA
11.
J Immunother Cancer ; 11(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37604642

RESUMO

BACKGROUND: Immune checkpoint inhibitors have revolutionized cancer treatment. However, they are associated with a unique spectrum of side effects, called immune-related adverse events (irAEs), which can cause significant morbidity and quickly progress to severe or life-threatening events if not treated promptly. Identifying predictive biomarkers for irAEs before immunotherapy initiation is therefore a critical area of research. Polymorphisms within the T-cell receptor beta (TCRB) variable (TRBV) gene have been implicated in autoimmune disease and may be mechanistically linked to irAEs. However, the repetitive nature of the TCRB locus and incomplete genome assembly has hampered the evaluation of TRBV polymorphisms in the past. PATIENTS AND METHODS: We used a novel method for long-amplicon next generation sequencing of rearranged TCRB chains from peripheral blood total RNA to evaluate the link between TRBV polymorphisms and irAEs in patients treated with immunotherapy for cancer. We employed multiplex PCR to create amplicons spanning the three beta chain complementarity-determining regions (CDR) regions to enable detection of polymorphism within the germline-encoded framework and CDR1 and CDR2 regions in addition to CDR3 profiling. Resultant amplicons were sequenced via the Ion Torrent and TRBV allele profiles constructed for each individual was correlated with irAE annotations to identify haplotypes associated with severe irAEs (≥ grade 3). RESULTS: Our study included 81 patients who had irAEs when treated with immunotherapy for cancer. By using principal component analysis of the 81 TRBV allele profiles followed by k-means clustering, we identified six major TRBV haplotypes. Strikingly, we found that one-third of this cohort possessed a TRBV allele haplotype that appeared to be protective against severe irAEs. CONCLUSION: The data suggest that long-amplicon TCRB repertoire sequencing can potentially identify TRBV haplotype groups that correlate with the risk of severe irAEs. Germline-encoded TRBV polymorphisms may serve as a predictive biomarker of severe irAEs.


Assuntos
Doenças Autoimunes , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Inibidores de Checkpoint Imunológico , Imunoterapia/efeitos adversos , Receptores de Antígenos de Linfócitos T
12.
NPJ Genom Med ; 8(1): 19, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553332

RESUMO

Immune checkpoint blockade is effective for only a subset of cancers. Targeting T-cell priming markers (TPMs) may enhance activity, but proper application of these agents in the clinic is challenging due to immune complexity and heterogeneity. We interrogated transcriptomics of 15 TPMs (CD137, CD27, CD28, CD80, CD86, CD40, CD40LG, GITR, ICOS, ICOSLG, OX40, OX40LG, GZMB, IFNG, and TBX21) in a pan-cancer cohort (N = 514 patients, 30 types of cancer). TPM expression was analyzed for correlation with histological type, microsatellite instability high (MSI-H), tumor mutational burden (TMB), and programmed death-ligand 1 (PD-L1) expression. Among 514 patients, the most common histological types were colorectal (27%), pancreatic (11%), and breast cancer (10%). No statistically significant association between histological type and TPM expression was seen. In contrast, expression of GZMB (granzyme B, a serine protease stored in activated T and NK cells that induces cancer cell apoptosis) and IFNG (activates cytotoxic T cells) were significantly higher in tumors with MSI-H, TMB ≥ 10 mutations/mb and PD-L1 ≥ 1%. PD-L1 ≥ 1% was also associated with significantly higher CD137, GITR, and ICOS expression. Patients' tumors were classified into "Hot", "Mixed", or "Cold" clusters based on TPM expression using hierarchical clustering. The cold cluster showed a significantly lower proportion of tumors with PD-L1 ≥ 1%. Overall, 502 patients (98%) had individually distinct patterns of TPM expression. Diverse expression patterns of TPMs independent of histological type but correlating with other immunotherapy biomarkers (PD-L1 ≥ 1%, MSI-H and TMB ≥ 10 mutations/mb) were observed. Individualized selection of patients based on TPM immunomic profiles may potentially help with immunotherapy optimization.

13.
Clin Cancer Res ; 29(16): 3203-3213, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37233991

RESUMO

PURPOSE: The Piedmont study is a prospectively designed retrospective evaluation of a new 48-gene antifolate response signature (AF-PRS) in patients with locally advanced/metastatic nonsquamous (NS) non-small cell lung cancer (NSCLC) treated with pemetrexed-containing platinum doublet chemotherapy (PMX-PDC). The study tested the hypothesis that AF-PRS identifies patients with NS-NSCLC who have a higher likelihood of responding positively to PMX-PDC. The goal was to gather clinical evidence supporting AF-PRS as a potential diagnostic test. EXPERIMENTAL DESIGN: Residual pretreatment FFPE tumor samples and clinical data were analyzed from 105 patients treated with first-line (1L) PMX-PDC. Ninety-five patients had sufficient RNA sequencing (RNA-seq) data quality and clinical annotation for inclusion in the analysis. Associations between AF-PRS status and associate genes and outcome measures including progression-free survival (PFS) and clinical response were evaluated. RESULTS: Overall, 53% of patients were AF-PRS(+), which was associated with extended PFS, but not overall survival, versus AF-PRS(-) (16.6 months vs. 6.6 months; P = 0.025). In patients who were stage I to III patients at the time of treatment, PFS was further extended in AF-PRS(+) versus AF-PRS(-) (36.2 months vs. 9.3 months; P = 0.03). Complete response (CR) to therapy was noted in 14 of 95 patients. AF-PRS(+) preferentially selected a majority (79%) of CRs, which were evenly split between patients stage I to III (six of seven) and stage IV (five of seven) at the time of treatment. CONCLUSIONS: AF-PRS identified a significant population of patients with extended PFS and/or clinical response following PMX-PDC treatment. AF-PRS may be a useful diagnostic test for patients indicated for systemic chemotherapy, especially when determining the optimal PDC regimen for locally advanced disease.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Antagonistas do Ácido Fólico , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Pemetrexede , Platina/uso terapêutico , Antagonistas do Ácido Fólico/uso terapêutico , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Estudos Retrospectivos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
14.
Cancer Med ; 12(12): 13155-13166, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37132280

RESUMO

BACKGROUND: Lymphocyte activation gene 3 (LAG-3) or CD223 is a transmembrane protein that serves as an immune checkpoint which attenuates T-cell activation. Many clinical trials of LAG-3 inhibitors have had modest effects, but recent data indicate that the LAG-3 antibody relatlimab, together with nivolumab (anti-PD-1), provided greater benefit than nivolumab alone in patients with melanoma. METHODS: In this study, the RNA expression levels of 397 genes were assessed in 514 diverse cancers at a clinical-grade laboratory (OmniSeq: https://www.omniseq.com/). Transcript abundance was normalized to internal housekeeping gene profiles and ranked (0-100 percentile) using a reference population (735 tumors; 35 histologies). RESULTS: A total of 116 of 514 tumors (22.6%) had high LAG-3 transcript expression (≥75 percentile rank). Cancers with the greatest proportion of high LAG-3 transcripts were neuroendocrine (47% of patients) and uterine (42%); colorectal had among the lowest proportion of high LAG-3 expression (15% of patients) (all p < 0.05 multivariate); 50% of melanomas were high LAG-3 expressors. There was significant independent association between high LAG-3 expression and high expression of other checkpoints, including programmed death-ligand 1 (PD-L1), PD-1, and CTLA-4, as well as high tumor mutational burden (TMB) ≥10 mutations/megabase, a marker for immunotherapy response (all p < 0.05 multivariate). However, within all tumor types, there was inter-patient variability in LAG-3 expression level. CONCLUSIONS: Prospective studies are therefore needed to determine if high levels of the LAG-3 checkpoint are responsible for resistance to anti-PD-1/PD-L1 or anti-CTLA-4 antibodies. Furthermore, a precision/personalized immunotherapy approach may require interrogating individual tumor immunograms to match patients to the right combination of immunotherapeutic agents for their malignancy.


Assuntos
Melanoma , Nivolumabe , Humanos , Nivolumabe/uso terapêutico , Antígeno B7-H1/genética , Transcriptoma , Estudos Prospectivos , Melanoma/terapia , Melanoma/tratamento farmacológico , Imunoterapia
15.
Hum Mol Genet ; 32(13): 2205-2218, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37014740

RESUMO

As an aneuploidy, trisomy is associated with mammalian embryonic and postnatal abnormalities. Understanding the underlying mechanisms involved in mutant phenotypes is broadly important and may lead to new strategies to treat clinical manifestations in individuals with trisomies, such as trisomy 21 [Down syndrome (DS)]. Although increased gene dosage effects because of a trisomy may account for the mutant phenotypes, there is also the possibility that phenotypic consequences of a trisomy can arise because of the presence of a freely segregating extra chromosome with its own centromere, i.e. a 'free trisomy' independent of gene dosage effects. Presently, there are no reports of attempts to functionally separate these two types of effects in mammals. To fill this gap, here we describe a strategy that employed two new mouse models of DS, Ts65Dn;Df(17)2Yey/+ and Dp(16)1Yey/Df(16)8Yey. Both models carry triplications of the same 103 human chromosome 21 gene orthologs; however, only Ts65Dn;Df(17)2Yey/+ mice carry a free trisomy. Comparison of these models revealed the gene dosage-independent impacts of an extra chromosome at the phenotypic and molecular levels for the first time. They are reflected by impairments of Ts65Dn;Df(17)2Yey/+ males in T-maze tests when compared with Dp(16)1Yey/Df(16)8Yey males. Results from the transcriptomic analysis suggest the extra chromosome plays a major role in trisomy-associated expression alterations of disomic genes beyond gene dosage effects. This model system can now be used to deepen our mechanistic understanding of this common human aneuploidy and obtain new insights into the effects of free trisomies in other human diseases such as cancers.


Assuntos
Síndrome de Down , Masculino , Camundongos , Humanos , Animais , Síndrome de Down/genética , Trissomia/genética , Aneuploidia , Cromossomos , Dosagem de Genes , Modelos Animais de Doenças , Mamíferos/genética
16.
Cancer Treat Rev ; 110: 102461, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36058143

RESUMO

Strategies for unlocking immunosuppression in the tumor microenvironment have been investigated to overcome resistance to first-generation immune checkpoint blockade with anti- programmed cell death protein 1 (PD-1)/ programmed death-ligand 1 (PD-L1) and anti-cytotoxic T-lymphocyte associated protein 4 (CTLA-4) agents. Indoleamine 2,3-dioxygenase (IDO) 1, an enzyme catabolizing tryptophan to kynurenine, creates an immunosuppressive environment in preclinical studies. Early phase clinical trials investigating inhibition of IDO1, especially together with checkpoint blockade, provided promising results. Unfortunately, the phase 3 trial of the IDO1 inhibitor epacadostat combined with the PD-1 inhibitor pembrolizumab did not show clinical benefit when compared with pembrolizumab monotherapy in patients with advanced malignant melanoma, which dampened enthusiasm for IDO inhibitors. Even so, several molecules, such as the aryl hydrocarbon receptor and tryptophan 2,3-dioxygenase, were reported as additional potential targets for the modulation of the tryptophan pathway, which might enhance clinical effectiveness. Furthermore, the combination of IDO pathway blockade with agents inhibiting other signals, such as those generated by PIK3CA mutations that may accompany IDO1 upregulation, may be a novel way to enhance activity. Importantly, IDO1 expression level varies by tumor type and among patients with the same tumor type, suggesting that patient selection based on expression levels of IDO1 may be warranted in clinical trials.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase , Melanoma , Antígeno B7-H1 , Antígeno CTLA-4 , Classe I de Fosfatidilinositol 3-Quinases , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Inibidores de Checkpoint Imunológico , Imunoterapia , Cinurenina/metabolismo , Melanoma/tratamento farmacológico , Melanoma/patologia , Receptor de Morte Celular Programada 1 , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismo , Triptofano Oxigenase , Microambiente Tumoral
17.
J Pers Med ; 11(12)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34945796

RESUMO

Recent epidemiological studies have shown that obesity, typically measured by increased body mass index (BMI), is associated with an increased risk of gastroesophageal adenocarcinoma (GEAC), but the contributing molecular and immune mechanisms remain unknown. Since obesity is known to promote chronic inflammation, we hypothesized that obesity leads to inflammation-related immune dysfunction, which can be reversed by immune-modulating therapy. To test our hypothesis, we examined the clinical and molecular data from advanced GEAC patients. To this end, 46 GEAC tumors were evaluated for biomarkers representing tumor inflammation, cell proliferation, and PD-L1 expression. A CoxPH regression model with potential co-variates, followed by pairwise post hoc analysis, revealed that inflammation in the GEAC tumor microenvironment is associated with improved overall survival, regardless of BMI. We also observed a significant association between cell proliferation and progression-free survival in overweight individuals who received immune-modulating therapy. In conclusion, our data confirm the role of the immune system in the natural course of GEAC and its responses to immunotherapies, but do not support the role of BMI as an independent clinically relevant biomarker in this group of patients.

18.
PLoS One ; 16(12): e0260089, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34855780

RESUMO

Timely and accurate identification of molecular alterations in solid tumors is essential for proper management of patients with advanced cancers. This has created a need for rapid, scalable comprehensive genomic profiling (CGP) systems that detect an increasing number of therapeutically-relevant variant types and molecular signatures. In this study, we assessed the analytical performance of the TruSight Oncology 500 High-Throughput assay for detection of somatic alterations from formalin-fixed paraffin-embedded tissue specimens. In parallel, we developed supporting software and automated sample preparation systems designed to process up to 70 clinical samples in a single NovaSeq 6000TM sequencing run with a turnaround time of <7 days from specimen receipt to report. The results demonstrate that the scalable assay accurately and reproducibly detects small variants, copy number alterations, microsatellite instability (MSI) and tumor mutational burden (TMB) from 40ng DNA, and multiple gene fusions, including known and unknown partners and splice variants from 20ng RNA. 717 tumor samples and reference materials with previously known alterations in 96 cancer-related genes were sequenced to evaluate assay performance. All variant classes were reliably detected at consistent and reportable variant allele percentages with >99% overall accuracy and precision. Our results demonstrate that the high-throughput CGP assay is a reliable method for accurate detection of molecular alterations in support of precision therapeutics in oncology. The supporting systems and scalable workflow allow for efficient interpretation and prompt reporting of hundreds of patient cancer genomes per week with excellent analytical performance.


Assuntos
Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Instabilidade de Microssatélites , Neoplasias/genética , Biomarcadores Tumorais/genética , Variações do Número de Cópias de DNA , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Humanos , Mutação , Neoplasias/patologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise de Sequência de RNA , Fluxo de Trabalho
19.
Biomark Res ; 9(1): 56, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233760

RESUMO

BACKGROUND: Contemporary to the rapidly evolving landscape of cancer immunotherapy is the equally changing understanding of immune tumor microenvironments (TMEs) which is crucial to the success of these therapies. Their reliance on a robust host immune response necessitates clinical grade measurements of immune TMEs at diagnosis. In this study, we describe a stable tumor immunogenic profile describing immune TMEs in multiple tumor types with ability to predict clinical benefit from immune checkpoint inhibitors (ICIs). METHODS: A tumor immunogenic signature (TIGS) was derived from targeted RNA-sequencing (RNA-seq) and gene expression analysis of 1323 clinical solid tumor cases spanning 35 histologies using unsupervised analysis. TIGS correlation with ICI response and survival was assessed in a retrospective cohort of NSCLC, melanoma and RCC tumor blocks, alone and combined with TMB, PD-L1 IHC and cell proliferation biomarkers. RESULTS: Unsupervised clustering of RNA-seq profiles uncovered a 161 gene signature where T cell and B cell activation, IFNg, chemokine, cytokine and interleukin pathways are over-represented. Mean expression of these genes produced three distinct TIGS score categories: strong (n = 384/1323; 29.02%), moderate (n = 354/1323; 26.76%), and weak (n = 585/1323; 44.22%). Strong TIGS tumors presented an improved ICI response rate of 37% (30/81); with highest response rate advantage occurring in NSCLC (ORR = 36.6%; 16/44; p = 0.051). Similarly, overall survival for strong TIGS tumors trended upward (median = 25 months; p = 0.19). Integrating the TIGS score categories with neoplastic influence quantified via cell proliferation showed highly proliferative and strong TIGS tumors correlate with significantly higher ICI ORR than poorly proliferative and weak TIGS tumors [14.28%; p = 0.0006]. Importantly, we noted that strong TIGS and highly [median = not achieved; p = 0.025] or moderately [median = 16.2 months; p = 0.025] proliferative tumors had significantly better survival compared to weak TIGS, highly proliferative tumors [median = 7.03 months]. Importantly, TIGS discriminates subpopulations of potential ICI responders that were considered negative for response by TMB and PD-L1. CONCLUSIONS: TIGS is a comprehensive and informative measurement of immune TME that effectively characterizes host immune response to ICIs in multiple tumors. The results indicate that when combined with PD-L1, TMB and cell proliferation, TIGS provides greater context of both immune and neoplastic influences on the TME for implementation into clinical practice.

20.
Ann Transl Med ; 9(2): 119, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33569421

RESUMO

BACKGROUND: Immunotherapeutic approaches for pancreatic ductal adenocarcinoma (PDAC) are less successful as compared to many other tumor types. In this study, comprehensive immune profiling was performed in order to identify novel, potentially actionable targets for immunotherapy. METHODS: Formalin-fixed paraffin embedded (FFPE) specimens from 68 patients were evaluated for expression of 395 immune-related markers (RNA-seq), mutational burden by complete exon sequencing of 409 genes, PD-L1 expression by immunohistochemistry (IHC), pattern of tumor infiltrating lymphocytes (TILs) infiltration by CD8 IHC, and PD-L1/L2 copy number by fluorescent in situ hybridization (FISH). RESULTS: The seven classes of actionable genes capturing myeloid immunosuppression, metabolic immunosuppression, alternative checkpoint blockade, CTLA-4 immune checkpoint, immune infiltrate, and programmed cell death 1 (PD-1) axis immune checkpoint, discerned 5 unique clinically relevant immunosuppression expression profiles (from most to least common): (I) combined myeloid and metabolic immunosuppression [affecting 25 of 68 patients (36.8%)], (II) multiple immunosuppressive mechanisms (29.4%), (III) PD-L1 positive (20.6%), (IV) highly inflamed PD-L1 negative (10.3%); and (V) immune desert (2.9%). The Wilcoxon rank-sum test was used to compare the PDAC cohort with a comparison cohort (n=1,416 patients) for the mean expressions of the 409 genes evaluated. Multiple genes including TIM3, VISTA, CCL2, CCR2, TGFB1, CD73, and CD39 had significantly higher mean expression versus the comparison cohort, while three genes (LAG3, GITR, CD38) had significantly lower mean expression. CONCLUSIONS: This study demonstrates that a clinically relevant unique profile of immune markers can be identified in PDAC and be used as a roadmap for personalized immunotherapeutic decision-making strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA