Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 12: 1055117, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467723

RESUMO

Introduction: Previous research indicates that the salivary microbiota may be a biomarker of oral as well as systemic disease. However, clarifying the potential bias from general health status and lifestyle-associated factors is a prerequisite of using the salivary microbiota for screening. Materials & Methods: ADDDITION-PRO is a nationwide Danish cohort, nested within the Danish arm of the Anglo-Danish-Dutch Study of Intensive treatment in People with Screen-Detected Diabetes in Primary Care. Saliva samples from n=746 individuals from the ADDITION-PRO cohort were characterized using 16s rRNA sequencing. Alpha- and beta diversity as well as relative abundance of genera was examined in relation to general health and lifestyle-associated variables. Permutational multivariate analysis of variance (PERMANOVA) was performed on individual variables and all variables together. Classification models were created using sparse partial-least squares discriminant analysis (sPLSDA) for variables that showed statistically significant differences based on PERMANOVA analysis (p < 0.05). Results: Glycemic status, hemoglobin-A1c (HbA1c) level, sex, smoking and weekly alcohol intake were found to be significantly associated with salivary microbial composition (individual variables PERMANOVA, p < 0.05). Collectively, these variables were associated with approximately 5.8% of the observed differences in the composition of the salivary microbiota. Smoking status was associated with 3.3% of observed difference, and smoking could be detected with good accuracy based on salivary microbial composition (AUC 0.95, correct classification rate 79.6%). Conclusions: Glycemic status, HbA1c level, sex, smoking and weekly alcohol intake were significantly associated with the composition of the salivary microbiota. Despite smoking only being associated with 3.3% of the difference in overall salivary microbial composition, it was possible to create a model for detection of smoking status with a high correct classification rate. However, the lack of information on the oral health status of participants serves as a limitation in the present study. Further studies in other cohorts are needed to validate the external validity of these findings.


Assuntos
Estilo de Vida , Microbiota , Humanos , RNA Ribossômico 16S/genética , Estudos de Coortes , Microbiota/genética , Análise de Variância
2.
Environ Microbiol ; 23(3): 1765-1779, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33587772

RESUMO

Glycerol/diol dehydratases (GDH) are enzymes that catalyse the production of propionate from 1,2-propanediol, and acrolein from glycerol. Acrolein reacts with dietary carcinogenic heterocyclic amines (HCA), reducing HCA mutagenicity, but is itself also an antimicrobial agent and toxicant. Gut microbial GDH activity has been suggested as an endogenous acrolein source; however, there is limited information on the potential of the intestinal microbiota to have GDH activity, and what impact it can have on the intestinal ecosystem and host health. We hypothesized that GDH activity of gut microbiota is determined by the abundance and distribution of GDH-active taxa and can be enhanced by supplementation of the GDH active Anaerobutyricum hallii, and tested this hypothesis combining quantitative profiling of gdh, model batch fermentations, microbiota manipulation, and kinetic modelling of acrolein formation. Our results suggest that GDH activity is a common trait of intestinal microbiota shared by a few taxa, which was dependent on overall gdh abundance. Anaerobutyricum hallii was identified as a key taxon in GDH metabolism, and its supplementation increased the rate of GDH activity and acrolein release, which enhanced the transformation of HCA and reduced fermentation activity. The findings of this first systematic study on acrolein release by intestinal microbiota indicate that dietary and microbial modulation might impact GDH activity, which may influence host health.


Assuntos
Microbioma Gastrointestinal , Microbiota , Propanodiol Desidratase , Clostridiales , Glicerol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA