Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(1)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38247524

RESUMO

Significant waste streams produced during winemaking include winery by-products such as pomace, skins, leaves, stems, lees, and seeds. These waste by-products were frequently disposed of in the past, causing resource waste and environmental issues. However, interest has risen in valorizing vineyard by-products to tap into their latent potential and turn them into high-value products. Wine industry by-products serve as a potential economic interest, given that they are typically significant natural bioactive sources that may exhibit significant biological properties related to human wellness and health. This review emphasizes the significance of winery by-product valorization as a sustainable management resource and waste management method. The novelty of this review lies in its comprehensive analysis of the potential of winery by-products as a source of bioactive compounds, extraction techniques, health benefits, and applications in various sectors. Chemical components in winery by-products include bioactive substances, antioxidants, dietary fibers, organic acids, and proteins, all of which have important industrial and therapeutic applications. The bioactives from winery by-products act as antioxidant, antidiabetic, and anticancer agents that have proven potential health-promoting effects. Wineries can switch from a linear waste management pattern to a more sustainable and practical method by adopting a circular bioeconomy strategy. Consequently, the recovery of bioactive compounds that function as antioxidants and health-promoting agents could promote various industries concomitant within the circular economy.

2.
Foods ; 11(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36140867

RESUMO

Pomegranate fruit is an ancient fruit that is used not only because of its deep-red color and tasty arils but also due to the health benefits of its extracts. Pomegranate is a valuable source of bioactive compounds, including colorful anthocyanins and other polyphenols. The main objective of the present study was to gain comprehensive knowledge of the phenolic composition and antioxidative activity of a new pomegranate cultivar, grown in Northwest Istria, a part of the North Adriatic coastal area. Various parts of the pomegranate fruit parts were extracted in 70% ethanol or water. Total phenolic content and antioxidative capacity were respectively determined with Folin-Ciocalteu reagent and ABTS radical. Phenolics were examined and analyzed with TLC, LC-MS, and HPLC. Pomegranate juice was prepared from red arils and after thermal treatment, the stability of anthocyanins was monitored for several months to understand the effect of storage. The highest total phenolics were determined in ethanol pomegranate peel extracts (30.5 ± 0.6 mg GAE/g DM), and water peel extracts exhibited the highest antioxidative activity (128 ± 2 µg TE/g DM). After five months of storage of thermally treated pomegranate juice, 50-60 percentage points increase in anthocyanin degradation was observed. Pomegranate peel was further tested as a sustainable inedible food source for papermaking. Due to the low content of cellulose and the high percentage of extractives, as well as a distinguished texture and appearance, the paper made from pomegranate peel is best suited for the production of specialty papers, making it particularly interesting for bioactives recovery, followed by material restructuring.

3.
Foods ; 11(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35885272

RESUMO

Sorghum and pearl millet are grain crops that can grow in semi-arid climates, with nutritional and bioactive properties superior to those of major cereals such as rice, wheat, and maize. However, these properties vary a lot, depending on the genetic factors, growing conditions, and place of cultivation. Four sorghum and two pearl millet grains cultivars grown in the Far-North region of Cameroon were screened for their chemical composition and antioxidant profile. The proximate and mineral analyses were performed using AOAC standard methods. The antioxidant profile was assayed spectrophotometrically and details on the phenolic compounds were investigated using HPLC. The pearl millet cultivars, especially mouri, showed higher contents of proteins, lipids, ash, calcium, copper, iron, and zinc. The red sorghum specifically exhibited the greatest amounts of total polyphenols (82.22 mg GAE/g DE), total flavonoids (23.82 mg CE/g DE), and total 3-deoxyanthocyanidin (9.06 mg/g DE). The most abundant phenolic compound was gallic acid, while the most frequent were chlorogenic and ferulic acids. The maximum antioxidant activity against DPPH was observed in yellow-pale sorghum (87.71%), followed by red sorghum (81.15%). Among the studied varieties of cereals, mouri pearl millet and red sorghum were the best sources of nutrients and bioactive compounds, respectively. Their consumption should be encouraged to tackle nutrient deficiencies and non-communicable diseases within local populations.

4.
Antioxidants (Basel) ; 11(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35052624

RESUMO

The present study focuses on heat-induced structural changes and the degradation kinetics of phytochemicals and antioxidant activity of red grape skin extract. The thermal degradation of anthocyanins, flavonoids, polyphenols, and antioxidant activity followed a first-order kinetic model, increasing with temperature due to the intensification of the degradation process. The activation energy (Ea) highlighted this phenomenon. Likewise, the kinetic and thermodynamic parameters certified the irreversible degradation of the bioactive compounds from the skin of the Babeasca neagra grape variety. Both temperature and duration of heating had a significant impact on the content of bioactive compounds. In addition, the red grape skin extract inhibited certain enzymes such as α-amylase, α-glucosidase, lipase, and lipoxygenase, which are associated with metabolic syndrome and inflammation. Further knowledge on the possible inhibition mechanisms exerted by the major anthocyanins found in red grape skin extract on the metabolic syndrome-associated enzymes was gathered upon running molecular docking tests. Detailed analysis of the resulting molecular models revealed that malvidin 3-O-glucoside binds in the vicinity of the catalytic site of α-amylase and lipase, whereas no direct contact with catalytic amino acids was identified in the case of α-glucosidase and lipoxygenase.

5.
Pharmaceuticals (Basel) ; 14(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34959618

RESUMO

In this study, high-value, carotenoid-rich oleoresin obtained by supercritical carbon dioxide (SFE-CO2) extraction was used to develop five variants of microencapsulated delivery system, based on whey proteins isolate (WPI), in combination with inulin (I), pectin (P) or lactose (L). The WPI:I and WPI:L variants were also obtained by conjugation via Maillard reaction. The microencapsulation of the SFE-CO2 sea buckthorn pomace oleoresin was performed by emulsion, complex coacervation and freeze-drying, which allowed for the obtaining of five powders, with different phytochemicals profile. The WPI:I conjugate showed the highest level of total carotenoids, whereas the counterpart WPI:L showed the highest content in linoleic acid (46 ± 1 mg/g) and palmitoleic acid (20.0 ± 0.5 mg/g). The ß-tocopherol and ß-sitosterol were identified in all variants, with the highest content in the conjugated WPI:L variant. Both WPI:L and WPI:I conjugate samples presented similar IC50 value for inhibitory activity against pancreatic lipase and α-amylase; the highest activity was observed for the conjugated WPI:I. The WPI:P combination allowed the highest release of carotenoids in the gastro-intestinal environment. All the powders exhibited poor flowing properties, whereas water activity (aw) ranged from 0.084 ± 0.03 to 0.241 ± 0.003, suggesting that all variants are stable during storage. In case of solubility, significant differences were noticed between non-heated and glycated samples, with the highest value for the WPI:I and the lowest for glycated WPI:I. The structural analysis revealed the presence of finer spherosomes in WPI:I and WPI:L, with a reduced clustering capacity, whereas the particles in the conjugated samples were more uniform and aggregated into a three-dimensional network.

6.
Antioxidants (Basel) ; 10(11)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34829552

RESUMO

The processing of sea buckthorn generates a significant amount of pomace, seeds and skin considered valuable sources of health-promoting macromolecules, such as carotenoids, pectin, flavonoids, phytosterols, polyunsaturated fatty acids and tocopherols. In this study, the bioactives from sea buckthorn pomace (SBP) were extracted using supercritical carbon dioxide (SFE-CO2), at different temperatures and pressures, allowing for obtaining four fractions according to separators (S40 and S45). The highest carotenoid content of 396.12 ± 1.02 mg/g D.W. was found in the S40 fraction, at extraction parameters of 35 °C/45 MPa, yielding an antioxidant activity of 32.10 ± 0.17 mMol TEAC/g D.W. The representative carotenoids in the extract were zeaxanthin, ß-carotene and lycopene, whereas all enriched SFE-CO2 extracts contained α-, ß- and δ-tocopherol, with α-tocopherol representing around 82% of all fractions. ß-sitosterol was the major phytosterol in the fractions derived from S45. All fractions contained significant fatty acids, with a predominance of linoleic acid. Remarkably, the enriched extracts showed a significant palmitoleic acid content, ranging from 53 to 65 µg/g. S40 extracts showed a good antibacterial activity against Staphylococcus aureus and Aeromonas hydrophila ATCC 7966, whereas S45 extracts showed a growth inhibition rate of 100% against Aspergillus niger after three days of growth. Our results are valuable, and they allow identifying the different profiles of extracts with many different applications in food, pharmaceutics, nutraceuticals and cosmeceuticals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA