Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
World J Surg ; 48(1): 59-71, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38686751

RESUMO

BACKGROUND: Quality measures determine reimbursement rates and penalties in value-based payment models. Frailty impacts these quality metrics across surgical specialties. We compared the discriminatory thresholds for the risk analysis index (RAI), modified frailty index-5 (mFI-5) and increasing patient age for the outcomes of extended length of stay (LOS [eLOS]), prolonged LOS within 30 days (pLOS), and protracted LOS (LOS > 30). METHODS: Patients ≥18 years old who underwent neurosurgical procedures between 2012 and 2020 were queried from the ACS-NSQIP. We performed receiver operating characteristic analysis, and multivariable analyses to examine discriminatory thresholds and identify independent associations. RESULTS: There were 411,605 patients included, with a median age of 59 years (IQR, 48-69), 52.2% male patients, and a white majority 75.2%. For eLOS: RAI C-statistic 0.653 (95% CI: 0.652-0.655), versus mFI-5 C-statistic 0.552 (95% CI: 0.550-0.554) and increasing patient age C-statistic 0.573 (95% CI: 0.571-0.575). Similar trends were observed for pLOS- RAI: 0.718, mFI-5: 0.568, increasing patient age: 0.559, and for LOS>30- RAI: 0.714, mFI-5: 0.548, and increasing patient age: 0.506. Patients with major complications had eLOS 10.1%, pLOS 26.5%, and LOS >30 45.5%. RAI showed a larger effect for all three outcomes, and major complications in multivariable analyses. CONCLUSION: Increasing frailty was associated with three key quality metrics that is, eLOS, pLOS, LOS > 30 after neurosurgical procedures. The RAI demonstrated a higher discriminating threshold compared to both mFI-5 and increasing patient age. Preoperative frailty screening may improve quality metrics through risk mitigation strategies and better preoperative communication with patients and their families.


Assuntos
Fragilidade , Tempo de Internação , Procedimentos Neurocirúrgicos , Humanos , Pessoa de Meia-Idade , Masculino , Feminino , Fragilidade/diagnóstico , Idoso , Tempo de Internação/estatística & dados numéricos , Medição de Risco , Procedimentos Neurocirúrgicos/estatística & dados numéricos , Indicadores de Qualidade em Assistência à Saúde , Estudos Retrospectivos , Adulto , Fatores Etários
2.
Am J Sports Med ; 51(4): 942-948, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36790220

RESUMO

BACKGROUND: Anterior cruciate ligament reconstruction (ACLR) using the quadriceps tendon is an increasingly popular technique. Both partial-thickness quadriceps tendon (PT-Q) and full-thickness quadriceps tendon (FT-Q) graft depths are employed. HYPOTHESIS/PURPOSE: This study was designed to assess isokinetic peak torque, average power, and total work during knee extension in patients with FT-Q or PT-Q grafts for ACLR. We hypothesized that both groups would show lower isokinetic values for the operated side, with greater deficits in the FT-Q group than in the PT-Q group. STUDY DESIGN: Cohort study; Level of evidence, 3. METHODS: A total of 26 patients who underwent ACLR with either an FT-Q or PT-Q graft were recruited between June 2021 and November 2021. Patients underwent isokinetic knee extension testing at > 1 year after surgery. Mixed repeated-measures analysis of covariance with least square difference post hoc testing was used to determine significant differences or interactions for all variables. RESULTS: Peak torque was significantly lower for the operated limb than the nonoperated limb in the FT-Q group (mean difference [MD] ± standard error [SE], -38.6 ± 8.3 Ncm [95% CI, -55.7 to -21.5 Ncm]; P < .001; d = 0.90) but not in the PT-Q group (MD ± SE, -7.3 ± 7.7 Ncm [95% CI, -23.2 to 8.5 Ncm]; P = .348; d = 0.20). Similarly, average power for the operated limb was lower than that for the nonoperated limb in the FT-Q group (MD ± SE, -53.6 ± 13.4 W [95% CI, -81.3 to -26.9 W]; P < .001; d = 0.88) but not in the PT-Q group (MD ± SE, -4.1 ± 12.4 W [95% CI, -29.8 to 21.5 W]; P = .742; d = 0.07), and total work was lower for the operated limb compared with the nonoperated limb in the FT-Q group (MD ± SE, -118.2 ± 27.1 J [95% CI, -174.3 to -62.2 J]; P < .001; d = 0.96) but not in the PT-Q group (MD ± SE, -18.3 ± 25.1 J [95% CI, -70.2 to 33.6 J]; P = .472; d = 0.15). CONCLUSION: The FT-Q group showed significant deficits in the operated limb compared with the nonoperated limb for all isokinetic variables. In contrast, no significant differences were found between the nonoperated and operated limbs for the PT-Q group.


Assuntos
Lesões do Ligamento Cruzado Anterior , Humanos , Lesões do Ligamento Cruzado Anterior/cirurgia , Estudos de Coortes , Músculo Quadríceps , Tendões/transplante , Articulação do Joelho/cirurgia , Força Muscular
3.
J Biol Chem ; 298(3): 101663, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35104502

RESUMO

During Escherichia coli cell division, an intracellular complex of cell division proteins known as the Z-ring assembles at midcell during early division and serves as the site of constriction. While the predominant protein in the Z-ring is the widely conserved tubulin homolog FtsZ, the actin homolog FtsA tethers the Z-ring scaffold to the cytoplasmic membrane by binding to FtsZ. While FtsZ is known to function as a dynamic, polymerized GTPase, the assembly state of its partner, FtsA, and the role of ATP are still unclear. We report that a substitution mutation in the FtsA ATP-binding site impairs ATP hydrolysis, phospholipid vesicle remodeling in vitro, and Z-ring assembly in vivo. We demonstrate by transmission electron microscopy and Förster Resonance Energy Transfer that a truncated FtsA variant, FtsA(ΔMTS) lacking a C-terminal membrane targeting sequence, self assembles into ATP-dependent filaments. These filaments coassemble with FtsZ polymers but are destabilized by unassembled FtsZ. These findings suggest a model wherein ATP binding drives FtsA polymerization and membrane remodeling at the lipid surface, and FtsA polymerization is coregulated with FtsZ polymerization. We conclude that the coordinated assembly of FtsZ and FtsA polymers may serve as a key checkpoint in division that triggers cell wall synthesis and division progression.


Assuntos
Proteínas do Citoesqueleto , Proteínas de Escherichia coli , Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ligação Proteica
4.
J Biol Chem ; 296: 100162, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33288679

RESUMO

MinD is a cell division ATPase in Escherichia coli that oscillates from pole to pole and regulates the spatial position of the cell division machinery. Together with MinC and MinE, the Min system restricts assembly of the FtsZ-ring to midcell, oscillating between the opposite ends of the cell and preventing FtsZ-ring misassembly at the poles. Here, we show that the ATP-dependent bacterial proteasome complex ClpXP degrades MinD in reconstituted degradation reactions in vitro and in vivo through direct recognition of the MinD N-terminal region. MinD degradation is enhanced during stationary phase, suggesting that ClpXP regulates levels of MinD in cells that are not actively dividing. ClpXP is a major regulator of growth phase-dependent proteins, and these results suggest that MinD levels are also controlled during stationary phase. In vitro, MinC and MinD are known to coassemble into linear polymers; therefore, we monitored copolymers assembled in vitro after incubation with ClpXP and observed that ClpXP promotes rapid MinCD copolymer destabilization and direct MinD degradation by ClpXP. The N terminus of MinD, including residue Arg 3, which is near the ATP-binding site in sequence, is critical for degradation by ClpXP. Together, these results demonstrate that ClpXP degradation modifies conformational assemblies of MinD in vitro and depresses Min function in vivo during periods of reduced proliferation.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/química , Trifosfato de Adenosina/química , Endopeptidase Clp/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Proteínas de Membrana/química , Chaperonas Moleculares/química , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Clonagem Molecular , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
5.
J Bacteriol ; 201(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30455283

RESUMO

The Min system in Escherichia coli, consisting of MinC, MinD, and MinE proteins, regulates division site selection by preventing assembly of the FtsZ-ring (Z-ring) and exhibits polar oscillation in vivo MinC antagonizes FtsZ polymerization, and in vivo, the cellular location of MinC is controlled by a direct association with MinD at the membrane. To further understand the interactions of MinC with FtsZ and MinD, we performed a mutagenesis screen to identify substitutions in minC that are associated with defects in cell division. We identified amino acids in both the N- and C-domains of MinC that are important for direct interactions with FtsZ and MinD in vitro, as well as mutations that modify the observed in vivo oscillation of green fluorescent protein (GFP)-MinC. Our results indicate that there are two distinct surface-exposed sites on MinC that are important for direct interactions with FtsZ, one at a cleft on the surface of the N-domain and a second on the C-domain that is adjacent to the MinD interaction site. Mutation of either of these sites leads to slower oscillation of GFP-MinC in vivo, although the MinC mutant proteins are still capable of a direct interaction with MinD in phospholipid recruitment assays. Furthermore, we demonstrate that interactions between FtsZ and both sites of MinC identified here are important for assembly of FtsZ-MinC-MinD complexes and that the conserved C-terminal end of FtsZ is not required for MinC-MinD complex formation with GTP-dependent FtsZ polymers.IMPORTANCE Bacterial cell division proceeds through the coordinated assembly of the FtsZ-ring, or Z-ring, at the site of division. Assembly of the Z-ring requires polymerization of FtsZ, which is regulated by several proteins in the cell. In Escherichia coli, the Min system, which contains MinC, MinD, and MinE proteins, exhibits polar oscillation and inhibits the assembly of FtsZ at nonseptal locations. Here, we identify regions on the surface of MinC that are important for contacting FtsZ and destabilizing FtsZ polymers.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Divisão Celular , Proteínas do Citoesqueleto/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Análise Mutacional de DNA , Proteínas de Escherichia coli/genética , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Proteínas de Membrana/genética , Mutagênese , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética
6.
Mol Microbiol ; 107(4): 558-576, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29280220

RESUMO

Cell division in prokaryotes initiates with assembly of the Z-ring at midcell, which, in Escherichia coli, is tethered to the inner leaflet of the cytoplasmic membrane through a direct interaction with FtsA, a widely conserved actin homolog. The Z-ring is comprised of polymers of tubulin-like FtsZ and has been suggested to provide the force for constriction. Here, we demonstrate that FtsA exerts force on membranes causing redistribution of membrane architecture, robustly hydrolyzes ATP and directly engages FtsZ polymers in a reconstituted system. Phospholipid reorganization by FtsA occurs rapidly and is mediated by insertion of a C-terminal membrane targeting sequence (MTS) into the bilayer and further promoted by a nucleotide-dependent conformational change relayed to the MTS. FtsA also recruits FtsZ to phospholipid vesicles via a direct interaction with the FtsZ C-terminus and regulates FtsZ assembly kinetics. These results implicate the actin homolog FtsA in establishment of a Z-ring scaffold, while directly remodeling the membrane and provide mechanistic insight into localized cell wall remodeling, invagination and constriction at the onset of division.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/ultraestrutura , Proteínas de Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/genética , Divisão Celular/fisiologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Vesículas Extracelulares/metabolismo , Hidrólise , Gotículas Lipídicas/metabolismo , Mutagênese Sítio-Dirigida , Fosfolipídeos/metabolismo
7.
FEBS Lett ; 589(2): 201-6, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25497011

RESUMO

The Min system of proteins, consisting of MinC, MinD and MinE, is essential for normal cell division in Escherichia coli. MinC forms a polar gradient to restrict placement of the division septum to midcell. MinC localization occurs through a direct interaction with MinD, a membrane-associating Par-like ATPase. MinE stimulates ATP hydrolysis by MinD, thereby releasing MinD from the membrane. Here, we show that MinD forms polymers with MinC and ATP without the addition of phospholipids. The topological regulator MinE induces disassembly of MinCD polymers. Two MinD mutant proteins, MinD(K11A) and MinD(ΔMTS15), are unable to form polymers with MinC.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/ultraestrutura , Escherichia coli/química , Escherichia coli/citologia , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestrutura , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/ultraestrutura , Viabilidade Microbiana , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Multimerização Proteica , Estrutura Quaternária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA