Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 208(4): 870-880, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35046107

RESUMO

Ribosomal proteins are thought to primarily facilitate biogenesis of the ribosome and its ability to synthesize protein. However, in this study, we show that Rpl22-like1 (Rpl22l1) regulates hematopoiesis without affecting ribosome biogenesis or bulk protein synthesis. Conditional loss of murine Rpl22l1 using stage or lineage-restricted Cre drivers impairs development of several hematopoietic lineages. Specifically, Tie2-Cre-mediated ablation of Rpl22l1 in hemogenic endothelium impairs the emergence of embryonic hematopoietic stem cells. Ablation of Rpl22l1 in late fetal liver progenitors impairs the development of B lineage progenitors at the pre-B stage and development of T cells at the CD44-CD25+ double-negative stage. In vivo labeling with O-propargyl-puromycin revealed that protein synthesis at the stages of arrest was not altered, indicating that the ribosome biogenesis and function were not generally compromised. The developmental arrest was associated with p53 activation, suggesting that the arrest may be p53-dependent. Indeed, development of both B and T lymphocytes was rescued by p53 deficiency. p53 induction was not accompanied by DNA damage as indicated by phospho-γH2AX induction or endoplasmic reticulum stress, as measured by phosphorylation of EIF2α, thereby excluding the known likely p53 inducers as causal. Finally, the developmental arrest of T cells was not rescued by elimination of the Rpl22l1 paralog, Rpl22, as we had previously found for the emergence of hematopoietic stem cells. This indicates that Rpl22 and Rpl22l1 play distinct and essential roles in supporting B and T cell development.


Assuntos
Diferenciação Celular/genética , Linfopoese/genética , Biossíntese de Proteínas , Proteínas Ribossômicas/deficiência , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Plasticidade Celular/genética , Plasticidade Celular/imunologia , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Imunofenotipagem , Linfócitos/imunologia , Linfócitos/metabolismo , Camundongos , Camundongos Knockout , Baço/citologia , Baço/imunologia , Baço/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
Front Immunol ; 12: 788278, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887873

RESUMO

B-cell lymphoma/leukemia 11B (BCL11B) is a C2H2 zinc finger transcription factor that is critically important for regulating the development and function of a variety of systems including the central nervous system, the skin, and the immune system. Germline heterozygous variants are associated with a spectrum of clinical disorders, including severe combined immunodeficiency as well as neurological, craniofacial, and dermal defects. Of these individuals, ~50% present with severe allergic disease. Here, we report the detailed clinical and laboratory workup of one of the most severe BCL11B-dependent atopic cases to date. Leveraging a zebrafish model, we were able to confirm a strong T-cell defect in the patient. Based on these data, we classify germline BCL11B-dependent atopic disease as a novel primary atopic disorder.


Assuntos
Mutação em Linhagem Germinativa , Hipersensibilidade/genética , Doenças da Imunodeficiência Primária/genética , Proteínas Repressoras/genética , Linfócitos T/imunologia , Proteínas Supressoras de Tumor/genética , Adolescente , Animais , Análise Mutacional de DNA , Feminino , Predisposição Genética para Doença , Heterozigoto , Humanos , Hipersensibilidade/diagnóstico , Hipersensibilidade/imunologia , Fenótipo , Doenças da Imunodeficiência Primária/diagnóstico , Doenças da Imunodeficiência Primária/imunologia , Doenças da Imunodeficiência Primária/metabolismo , Proteínas Repressoras/metabolismo , Índice de Gravidade de Doença , Linfócitos T/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
Cell Rep ; 34(5): 108716, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33535043

RESUMO

TCF1 plays a critical role in T lineage commitment and the development of αß lineage T cells, but its role in γδ T cell development remains poorly understood. Here, we reveal a regulatory axis where T cell receptor (TCR) signaling controls TCF1 expression through an E-protein-bound regulatory element in the Tcf7 locus, and this axis regulates both γδ T lineage commitment and effector fate. Indeed, the level of TCF1 expression plays an important role in setting the threshold for γδ T lineage commitment and modulates the ability of TCR signaling to influence effector fate adoption by γδ T lineage progenitors. This finding provides mechanistic insight into how TCR-mediated repression of E proteins promotes the development of γδ T cells and their adoption of the interleukin (IL)-17-producing effector fate. IL-17-producing γδ T cells have been implicated in cancer progression and in the pathogenesis of psoriasis and multiple sclerosis.


Assuntos
Fator 1-alfa Nuclear de Hepatócito/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Animais , Diferenciação Celular , Humanos , Camundongos , Modelos Imunológicos , Transdução de Sinais
4.
Front Physiol ; 7: 606, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28018236

RESUMO

It has been experimentally shown that host-microbial interaction plays a major role in shaping the wellness or disease of the human body. Microorganisms coexisting in human tissues provide a variety of benefits that contribute to proper functional activity in the host through the modulation of fundamental processes such as signal transduction, immunity and metabolism. The unbalance of this microbial profile, or dysbiosis, has been correlated with the genesis and evolution of complex diseases such as cancer. Although this latter disease has been thoroughly studied using different high-throughput (HT) technologies, its heterogeneous nature makes its understanding and proper treatment in patients a remaining challenge in clinical settings. Notably, given the outstanding role of host-microbiome interactions, the ecological interactions with microorganisms have become a new significant aspect in the systems that can contribute to the diagnosis and potential treatment of solid cancers. As a part of expanding precision medicine in the area of cancer research, efforts aimed at effective treatments for various kinds of cancer based on the knowledge of genetics, biology of the disease and host-microbiome interactions might improve the prediction of disease risk and implement potential microbiota-directed therapeutics. In this review, we present the state of the art of sequencing and metabolome technologies, computational methods and schemes in systems biology that have addressed recent breakthroughs of uncovering relationships or associations between microorganisms and cancer. Together, microbiome studies extend the horizon of new personalized treatments against cancer from the perspective of precision medicine through a synergistic strategy integrating clinical knowledge, HT data, bioinformatics, and systems biology.

5.
J Nutr ; 146(9): 1634-40, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27466601

RESUMO

BACKGROUND: Glutamine is catabolized in the liver by glutaminase 2 (GLS2). Evidence suggests that peroxisome proliferator-activated receptor α (PPARα) represses the expression of several amino acid-catabolizing enzymes, but for Gls2 this is unknown. OBJECTIVE: The aim of the study was to assess whether PPARα regulates Gls2 expression. METHODS: For 8 d, 7-9-wk-old male C57BL/6 wild-type (WT) and Ppara-null mice weighing 23.4 ± 0.5 g were fed diets with different dietary protein:carbohydrate (DP:DCH) ratios (6%:77%, 20%:63%, or 50%:33%). Liver samples were obtained after 16 h of feed deprivation or 3 h of refeeding, and microarrays were performed. Hepatic glutaminase expression was measured by quantitative polymerase chain reaction and Western blotting. Cotransfection analyses in hepatocellular carcinoma cell line (HepG2) cells with PPARα and hepatocyte nuclear factor 4α (HNF4α) expression vectors were performed. RESULTS: The microarray results showed that Gls2 was the only upregulated gene in WT mice, but not in the Ppara-null mice. In the feed-deprived WT mice, the Gls2 mRNA and protein abundances in the 50%:33% group were 2.5- and 1.1-fold greater (P < 0.05), respectively, than those in the 20%:63% group, which were 2.3- and 0.4-fold greater than those in the 6%:77% group (P < 0.01). Gls2 mRNA expression in the 6%:77% group of feed-deprived Ppara-null mice was 33-fold greater than that in the same group of WT mice (P < 0.0001). GLS2 protein abundance in HepG2 cells was 78% greater than that in the controls (P < 0.0001) after HNF4α overexpression, and it was 99% greater after transfection with a short hairpin targeting PPARα. CONCLUSIONS: In Ppara-null mice, Gls2 mRNA expression was greater than in WT mice, regardless of the DP:DCH ratio. In HepG2 cells overexpressing HNF4α, Gls2 expression increased, an effect repressed by overexpression of PPARα. This suggests that Gls2 depends on the PPARα/HNF4α counterregulatory transcriptional control.


Assuntos
Regulação para Baixo , Glutaminase/metabolismo , Fígado/enzimologia , PPAR alfa/metabolismo , Animais , Sequência de Bases , Dieta , Carboidratos da Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Regulação Enzimológica da Expressão Gênica , Glutaminase/genética , Células Hep G2 , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR alfa/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima
6.
J Nutr ; 143(8): 1211-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23761645

RESUMO

Body nitrogen retention is dependent on the amount of dietary protein consumed, as well as the fat and carbohydrate content in the diet, due to the modulation of amino acid oxidation. PPARα is a transcription factor involved in the upregulation of the expression of enzymes of fatty acid oxidation. However, the role of putative PPARα response elements (PPREs) in the promoter of several amino acid-degrading enzymes (AADEs) is not known. The aim of this work was to study the effect of the synthetic ligand Wy 14643 and the natural ligands palmitate, oleate, and linoleate in rats fed graded concentrations of dietary protein (6, 20, or 50 g/100 g of total diet) on the expression of the AADEs histidase, serine dehydratase, and tyrosine aminotransferase. Thus, we fed male Wistar rats diets containing 6, 20, or 50% casein for 10 d. The results showed that addition of Wy 14643 to the diet significantly reduced the expression of the AADEs. Furthermore, the incubation of hepatocytes with natural ligands of PPARα or feeding rats with diets containing soybean oil, safflower oil, lard, or coconut oil as sources of dietary fat significantly repressed the expression of the AADEs. Gene reporter assays and mobility shift assays demonstrated that the PPRE located at -482 bp of the histidase gene actively bound PPARα in rat hepatocytes. These data indicate that PPARα ligands may reduce amino acid catabolism in rats.


Assuntos
Regulação para Baixo , Histidina Amônia-Liase/metabolismo , Fígado/enzimologia , PPAR alfa/metabolismo , Animais , Dieta , Gorduras na Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Ácidos Graxos Insaturados/administração & dosagem , Genes Reporter , Células Hep G2 , Hepatócitos/enzimologia , Histidina Amônia-Liase/genética , Humanos , Ligantes , Metabolismo dos Lipídeos , Fígado/efeitos dos fármacos , Masculino , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Elementos de Resposta , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA