Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 114: 202-212, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28161547

RESUMO

The human papillomavirus (HPV) infection, which is strongly related to cervical cancer, can be reduced by the topical application of imiquimod. Some strategies have been used to increase the adhesion and penetration of drugs through the vaginal mucosa. Two of them are the development of mucoadhesive semisolid formulations and the development of polymeric nanocarriers. In this paper, we hypothesize that the combined use of these two strategies results in a better performance of the formulation to retain imiquimod into the vaginal tissue. Aiming this, two different systems are proposed: (a) chitosan-coated poly(ε-caprolactone)-nanocapsules incorporated into hydroxyethylcellulose gel (HEC-NCimiq-chit), and (b) poly(ε-caprolactone)-nanocapsules incorporated into chitosan hydrogel (CHIT-NCimiq). These formulations were submitted to three main tests: mucoadhesivity by interaction, permeation and washability test (or retention test). We developed an integrative index that allows comparing the global performance of the proposed formulations by considering jointly the results of these three tests. Thus, when considered the integrative indexes for the formulations, our results show that CHIT-NCimiq presents the best performance for the treatment of HPV.


Assuntos
Aminoquinolinas/administração & dosagem , Aminoquinolinas/farmacocinética , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Quitosana/química , Nanocápsulas/química , Vagina/metabolismo , Administração Intravaginal , Animais , Linhagem Celular Tumoral , Celulose/análogos & derivados , Portadores de Fármacos , Composição de Medicamentos , Feminino , Géis , Humanos , Imiquimode , Veículos Farmacêuticos , Poliésteres , Suínos , Adesivos Teciduais
2.
AAPS PharmSciTech ; 17(4): 863-71, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26381915

RESUMO

The rose-hip oil holds skin regenerating properties with applications in the dermatological and cosmetic area. Its nanoencapsulation might favor the oil stability and its incorporation into hydrophilic formulations, besides increasing the contact with the skin and prolonging its effect. The aim of the present investigation was to develop suitable rose-hip-oil-loaded nanocapsules, to verify the nanocapsule effect on the UV-induced oxidation of the oil and to obtain topical formulations by the incorporation of the nanocapsules into chitosan gel and film. The rose-hip oil (500 or 600 µL), polymer (Eudragit RS100®, 100 or 200 mg), and acetone (50 or 100 mL) contents were separately varied aiming to obtain an adequate size distribution. The results led to a combination of the factors acetone and oil. The developed formulation showed average diameter of 158 ± 6 nm with low polydispersity, pH of 5.8 ± 0.9, zeta potential of +9.8 ± 1.5 mV, rose-hip oil content of 54 ± 1 µL/mL and tendency to reversible creaming. No differences were observed in the nanocapsules properties after storage. The nanoencapsulation of rose-hip oil decreased the UVA and UVC oxidation of the oil. The chitosan gel and film containing rose-hip-oil-loaded nanocapsules showed suitable properties for cutaneous use. In conclusion, it was possible to successfully obtain rose-hip-oil-loaded nanocapsules and to confirm the nanocapsules effect in protecting the oil from the UV rays. The chitosan gel and film were considered interesting alternatives for incorporating the nanoencapsulated rose-hip oil, combining the advantages of the nanoparticles to the advantages of chitosan.


Assuntos
Hidrogéis/química , Nanocápsulas/química , Nanopartículas/química , Óleos de Plantas/química , Rosa/química , Acetona/química , Resinas Acrílicas/química , Administração Tópica , Química Farmacêutica/métodos , Quitosana/química , Tamanho da Partícula , Polímeros/química , Raios Ultravioleta/efeitos adversos
3.
Eur J Pharm Sci ; 79: 36-43, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26342772

RESUMO

In this study, two types of cutaneous-directed nanoparticles are proposed for the co-encapsulation of imiquimod (a drug approved for the treatment of basal cell carcinoma) and copaiba oil (oil that exhibits anti-proliferative properties). Nanostructured copaiba capsules (NCCImq) were prepared using the interfacial deposition method, and nanostructured Brazilian lipids (NBLImq) were prepared by high-pressure homogenization. The formulations exhibited average diameter, zeta potential, pH and drug content of approximately 200nm, -12mV, 6 and 1mgmL(-1), respectively. In addition, the formulations exhibited homogeneity regarding particle size, high encapsulation efficiency and stability. Both nanocarriers controlled imiquimod release, and NBLImq exhibited slower drug release (p < 0.05), likely due to increased interaction of the drug with the solid lipid (cupuaçu seed butter). The in vitro evaluation of the imiquimod-loaded nanocarriers was performed using healthy skin cells (keratinocytes, HaCaT); no alteration was observed, suggesting the biocompatibility of the nanocarriers. In addition, in vitro skin permeation/penetration using pig skin was performed, and NCCImq led to increased drug retention in the skin layers and reduced amounts of drug found in the receiver solution. Thus, NCCImq is considered the most promising nanoformulation for the treatment of skin carcinoma.


Assuntos
Aminoquinolinas/administração & dosagem , Bálsamos/administração & dosagem , Nanocápsulas/administração & dosagem , Neoplasias Cutâneas/tratamento farmacológico , Aminoquinolinas/farmacocinética , Aminoquinolinas/uso terapêutico , Animais , Bálsamos/farmacocinética , Bálsamos/uso terapêutico , Linhagem Celular , Feminino , Humanos , Imiquimode , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Tamanho da Partícula , Pele/metabolismo , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA