Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Science ; 362(6419)2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30523084

RESUMO

To discover leads for next-generation chemoprotective antimalarial drugs, we tested more than 500,000 compounds for their ability to inhibit liver-stage development of luciferase-expressing Plasmodium spp. parasites (681 compounds showed a half-maximal inhibitory concentration of less than 1 micromolar). Cluster analysis identified potent and previously unreported scaffold families as well as other series previously associated with chemoprophylaxis. Further testing through multiple phenotypic assays that predict stage-specific and multispecies antimalarial activity distinguished compound classes that are likely to provide symptomatic relief by reducing asexual blood-stage parasitemia from those which are likely to only prevent malaria. Target identification by using functional assays, in vitro evolution, or metabolic profiling revealed 58 mitochondrial inhibitors but also many chemotypes possibly with previously unidentified mechanisms of action.


Assuntos
Antimaláricos/farmacologia , Quimioprevenção , Descoberta de Drogas , Malária/prevenção & controle , Plasmodium/efeitos dos fármacos , Antimaláricos/química , Antimaláricos/isolamento & purificação , Antimaláricos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Humanos , Mitocôndrias/efeitos dos fármacos , Plasmodium/crescimento & desenvolvimento
2.
PLoS One ; 12(1): e0169797, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28085924

RESUMO

The tumor microenvironment is composed of cellular and stromal components such as tumor cells, mesenchymal cells, immune cells, cancer associated fibroblasts and the supporting extracellular matrix. The tumor microenvironment provides crucial support for growth and progression of tumor cells and affects tumor response to therapeutic interventions. To better understand tumor biology and to develop effective cancer therapeutic agents it is important to develop preclinical platforms that can faithfully recapitulate the tumor microenvironment and the complex interaction between the tumor and its surrounding stromal elements. Drug studies performed in vitro with conventional two-dimensional cancer cell line models do not optimally represent clinical drug response as they lack true tumor heterogeneity and are often performed in static culture conditions lacking stromal tumor components that significantly influence the metabolic activity and proliferation of cells. Recent microfluidic approaches aim to overcome such obstacles with the use of cell lines derived in artificial three-dimensional supportive gels or micro-chambers. However, absence of a true tumor microenvironment and full interstitial flow, leads to less than optimal evaluation of tumor response to drug treatment. Here we report a continuous perfusion microfluidic device coupled with microscopy and image analysis for the assessment of drug effects on intact fresh tumor tissue. We have demonstrated that fine needle aspirate biopsies obtained from patient-derived xenograft models of adenocarcinoma of the lung can successfully be analyzed for their response to ex vivo drug treatment within this biopsy trapping microfluidic device, wherein a protein kinase C inhibitor, staurosporine, was used to assess tumor cell death as a proof of principle. This approach has the potential to study tumor tissue within its intact microenvironment to better understand tumor response to drug treatments and eventually to choose the most effective drug and drug combination for individual patients in a cost effective and timely manner.


Assuntos
Anticorpos Monoclonais/farmacologia , Doxorrubicina/farmacologia , Técnicas Analíticas Microfluídicas/instrumentação , Neoplasias/patologia , Estaurosporina/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Biópsia , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Camundongos , Camundongos Pelados , Camundongos SCID , Neoplasias/tratamento farmacológico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Biomed Microdevices ; 16(5): 727-36, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24907052

RESUMO

While many advanced liver models support hepatic phenotypes necessary for drug and disease studies, these models are characterized by intricate features such as co-culture with one of more supporting cell types or advanced media perfusion systems. These systems have helped elucidate some of the critical biophysical features missing from standard well-plate based hepatocyte culture, but their advanced designs add to their complexity. Additionally, regardless of the culture system, primary hepatocyte culture systems suffer from reproducibility issues due to phenotypic variation and expensive, limited supplies of donor lots. Here we describe a microfluidic bilayer device that sustains primary human hepatocyte phenotypes, including albumin production, factor IX production, cytochrome P450 3A4 drug metabolism and bile canaliculi formation for at least 14 days in a simple monoculture format with static media. Using a variety of channel architectures, we describe how primary cell phenotype is promoted by spatial confinement within the microfluidic channel, without the need for perfusion or co-culture. By sourcing human hepatocytes expanded in the Fah, Rag2, and Il2rg-knockout (FRG™-KO) humanized mouse model, utilizing a few hundred hepatocytes within each channel, and maintaining hepatocyte function for weeks in vitro within a relatively simple model, we demonstrate a basic primary human hepatocyte culture system that addresses many of the major hurdles in human hepatocyte culture research.


Assuntos
Técnicas de Cultura de Células , Proliferação de Células , Hepatócitos/metabolismo , Fígado , Técnicas Analíticas Microfluídicas , Animais , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Células Hep G2 , Hepatócitos/citologia , Humanos , Camundongos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA