Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 10: 986319, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105358

RESUMO

Chromatin is spatially and temporally regulated through a series of orchestrated processes resulting in the formation of 3D chromatin structures such as topologically associating domains (TADs), loops and Polycomb Bodies. These structures are closely linked to transcriptional regulation, with loss of control of these processes a frequent feature of cancer and developmental syndromes. One such oncogenic disruption of the 3D genome is through recurrent dysregulation of Polycomb Group Complex (PcG) functions either through genetic mutations, amplification or deletion of genes that encode for PcG proteins. PcG complexes are evolutionarily conserved epigenetic complexes. They are key for early development and are essential transcriptional repressors. PcG complexes include PRC1, PRC2 and PR-DUB which are responsible for the control of the histone modifications H2AK119ub1 and H3K27me3. The spatial distribution of the complexes within the nuclear environment, and their associated modifications have profound effects on the regulation of gene transcription and the 3D genome. Nevertheless, how PcG complexes regulate 3D chromatin organization is still poorly understood. Here we glean insights into the role of PcG complexes in 3D genome regulation and compaction, how these processes go awry during tumorigenesis and the therapeutic implications that result from our insights into these mechanisms.

2.
Trends Genet ; 38(4): 333-352, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34426021

RESUMO

Cell identity is tightly controlled by specific transcriptional programs which require post-translational modifications of histones. These histone modifications allow the establishment and maintenance of active and repressed chromatin domains. Histone H2A lysine 119 ubiquitination (H2AK119ub1) has an essential role in building repressive chromatin domains during development. It is regulated by the counteracting activities of the Polycomb repressive complex 1 (PRC1) and the Polycomb repressive-deubiquitinase (PR-DUB) complexes, two multi-subunit ensembles that write and erase this modification, respectively. We have catalogued the recurrent genetic alterations in subunits of the PRC1 and PR-DUB complexes in both neurodevelopmental disorders and cancer. These genetic lesions are often shared across disorders, and we highlight common mechanisms of H2AK119ub1 dysregulation and how they affect development in multiple disease contexts.


Assuntos
Deficiências do Desenvolvimento , Histonas , Neoplasias , Complexo Repressor Polycomb 1 , Proteínas do Grupo Polycomb , Ubiquitinação , Criança , Cromatina/genética , Deficiências do Desenvolvimento/genética , Histonas/genética , Histonas/metabolismo , Humanos , Neoplasias/genética , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo
3.
Mol Cell ; 81(17): 3526-3541.e8, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34186021

RESUMO

BAP1 is mutated or deleted in many cancer types, including mesothelioma, uveal melanoma, and cholangiocarcinoma. It is the catalytic subunit of the PR-DUB complex, which removes PRC1-mediated H2AK119ub1, essential for maintaining transcriptional repression. However, the precise relationship between BAP1 and Polycombs remains elusive. Using embryonic stem cells, we show that BAP1 restricts H2AK119ub1 deposition to Polycomb target sites. This increases the stability of Polycomb with their targets and prevents diffuse accumulation of H2AK119ub1 and H3K27me3. Loss of BAP1 results in a broad increase in H2AK119ub1 levels that is primarily dependent on PCGF3/5-PRC1 complexes. This titrates PRC2 away from its targets and stimulates H3K27me3 accumulation across the genome, leading to a general chromatin compaction. This provides evidence for a unifying model that resolves the apparent contradiction between BAP1 catalytic activity and its role in vivo, uncovering molecular vulnerabilities that could be useful for BAP1-related pathologies.


Assuntos
Cromatina/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo , Animais , Linhagem Celular/metabolismo , Cromatina/genética , Cromatina/fisiologia , Células-Tronco Embrionárias/metabolismo , Heterocromatina , Histonas/metabolismo , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologia , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/fisiologia , Ubiquitinação
4.
Mol Cell ; 76(3): 437-452.e6, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31521505

RESUMO

Polycomb repressive complex 2 (PRC2) is composed of EED, SUZ12, and EZH1/2 and mediates mono-, di-, and trimethylation of histone H3 at lysine 27. At least two independent subcomplexes exist, defined by their specific accessory proteins: PRC2.1 (PCL1-3, EPOP, and PALI1/2) and PRC2.2 (AEBP2 and JARID2). We show that PRC2.1 and PRC2.2 share the majority of target genes in mouse embryonic stem cells. The loss of PCL1-3 is sufficient to evict PRC2.1 from Polycomb target genes but only leads to a partial reduction of PRC2.2 and H3K27me3. Conversely, disruption of PRC2.2 function through the loss of either JARID2 or RING1A/B is insufficient to completely disrupt targeting of SUZ12 by PCLs. Instead, the combined loss of both PRC2.1 and PRC2.2 is required, leading to the global mislocalization of SUZ12. This supports a model in which the specific accessory proteins within PRC2.1 and PRC2.2 cooperate to direct H3K27me3 via both synergistic and independent mechanisms.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Cromatina/genética , Humanos , Metilação , Camundongos , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 2/genética , Ligação Proteica , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
Mol Cell ; 70(3): 408-421.e8, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29628311

RESUMO

The polycomb repressive complex 2 (PRC2) consists of core subunits SUZ12, EED, RBBP4/7, and EZH1/2 and is responsible for mono-, di-, and tri-methylation of lysine 27 on histone H3. Whereas two distinct forms exist, PRC2.1 (containing one polycomb-like protein) and PRC2.2 (containing AEBP2 and JARID2), little is known about their differential functions. Here, we report the discovery of a family of vertebrate-specific PRC2.1 proteins, "PRC2 associated LCOR isoform 1" (PALI1) and PALI2, encoded by the LCOR and LCORL gene loci, respectively. PALI1 promotes PRC2 methyltransferase activity in vitro and in vivo and is essential for mouse development. Pali1 and Aebp2 define mutually exclusive, antagonistic PRC2 subtypes that exhibit divergent H3K27-tri-methylation activities. The balance of these PRC2.1/PRC2.2 activities is required for the appropriate regulation of polycomb target genes during differentiation. PALI1/2 potentially link polycombs with transcriptional co-repressors in the regulation of cellular identity during development and in cancer.


Assuntos
Complexo Repressor Polycomb 2/genética , Proteínas Repressoras/genética , Vertebrados/genética , Sequência de Aminoácidos , Animais , Diferenciação Celular/genética , Linhagem Celular , Células HEK293 , Histonas/genética , Humanos , Metilação , Metiltransferases/genética , Camundongos , Neoplasias/genética , Alinhamento de Sequência
6.
Curr Opin Cell Biol ; 37: 42-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26497635

RESUMO

The Polycomb Repressive Complex 2 (PRC2) is a multiprotein chromatin modifying complex that is essential for vertebrate development and differentiation. It is composed of a trimeric core of SUZ12, EED and EZH1/2 and is responsible for catalysing both di-methylation and tri-methylation of Histone H3 at lysine 27 (H3K27me2/3). Both H3K27 methylations contribute to the role of PRC2 in maintaining cellular identity. In all cell types, the H3K27me3 modification is associated with repression of genes encoding regulators of alternative lineages. The less well-characterised H3K27me2 modification is ubiquitous throughout the genome and is thought to act like a protective blanket to maintain the repression of non-H3K27me3 associated genes and cell-type-specific enhancers of alternative lineages. Recent cancer genome sequencing studies highlighted that several genes encoding PRC2 components as well as Histone H3 are mutated in multiple cancer types. Intriguingly, these cancers have changes in the global levels of the H3K27me2 and H3K27me3 modifications as well as genome-wide redistributions. Exciting new studies suggest that these changes confer context dependent blocks in cellular differentiation and increased vulnerability to aberrant cancer signalling pathways.


Assuntos
Histonas/metabolismo , Neoplasias/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Humanos , Metilação , Neoplasias/patologia
7.
Genes Dev ; 29(21): 2231-43, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26494712

RESUMO

Polycomb-like proteins 1-3 (PCL1-3) are substoichiometric components of the Polycomb-repressive complex 2 (PRC2) that are essential for association of the complex with chromatin. However, it remains unclear why three proteins with such apparent functional redundancy exist in mammals. Here we characterize their divergent roles in both positively and negatively regulating cellular proliferation. We show that while PCL2 and PCL3 are E2F-regulated genes expressed in proliferating cells, PCL1 is a p53 target gene predominantly expressed in quiescent cells. Ectopic expression of any PCL protein recruits PRC2 to repress the INK4A gene; however, only PCL2 and PCL3 confer an INK4A-dependent proliferative advantage. Remarkably, PCL1 has evolved a PRC2- and chromatin-independent function to negatively regulate proliferation. We show that PCL1 binds to and stabilizes p53 to induce cellular quiescence. Moreover, depletion of PCL1 phenocopies the defects in maintaining cellular quiescence associated with p53 loss. This newly evolved function is achieved by the binding of the PCL1 N-terminal PHD domain to the C-terminal domain of p53 through two unique serine residues, which were acquired during recent vertebrate evolution. This study illustrates the functional bifurcation of PCL proteins, which act in both a chromatin-dependent and a chromatin-independent manner to regulate the INK4A and p53 pathways.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas do Grupo Polycomb/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Proliferação de Células/genética , Células Cultivadas , Cromatina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição E2F/metabolismo , Humanos , Camundongos , Proteínas do Grupo Polycomb/genética , Ligação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA